Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rec ; 24(1): e202300206, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37736673

RESUMO

The development of sodium-ion battery (SIB) anodes is still hindered by their rapid capacity decay and poor rate capabilities. Although there have been some new materials that can be used to fabricate stable anodes, SIBs are still far from wide applications. Strategies like nanostructure construction and material modification have been used to prepare more robust SIB anodes. Among all the design strategies, the hollow structure design is a promising method in the development of advanced anode materials. In the past decade, research efforts have been devoted to modifying the synthetic route, the type of templates, and the interior structure of hollow structures with high capacity and stability. A brief introduction is made to the main material systems and classifications of hollow structural materials first. Then different morphologies of hollow structural materials for SIB anodes from the latest reports are discussed, including nanoboxes, nanospheres, yolk shells, nanotubes, and other more complex shapes. The most used templates for the synthesis of hollow structrual materials are covered and the perspectives are highlighted at the end. This review offers a comprehensive discussion of the synthesis of hollow structural materials for SIB anodes, which could be potentially of use to research areas involving hollow materials design for batteries.

2.
ACS Nano ; 17(24): 25507-25518, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38079354

RESUMO

The commercialization of lithium-sulfur (Li-S) batteries has been hampered by diverse challenges, including the shuttle phenomenon and low electrical/ionic conductivity of lithium sulfide and sulfur. To address these issues, extensive research has been devoted to developing multifunctional interlayers. However, interlayers capable of simultaneously suppressing the polysulfide (PS) shuttle and ensuring stable electrical and ionic conductivity are relatively uncommon. Moreover, the use of thick and heavy interlayers results in an unavoidable decline in the energy density of Li-S batteries. We developed an ultrathin (750 nm), lightweight (0.182 mg cm-2) interlayer that facilitates mixed ionic-electronic conduction using the solution shearing technique. The interlayer, composed of carbon nanotube (CNT)/Nafion/poly-3,4-ethylenedioxythiophene:tetracyanoborate (PEDOT:TCB), effectively suppresses the shuttle phenomenon through the synergistic segregation and adsorption effects on PSs by Nafion and CNT/PEDOT, respectively. Furthermore, the electrical/ionic conductivity of the interlayer can be improved via counterion exchange and homogeneous Li+ ion flux/good wettability from SO3- functional group of Nafion, respectively. Enhanced sulfur utilization and reaction kinetics through polysulfide shuttle inhibition and facilitated electron/ion transfer by interlayer enable a high discharge capacity of 1029 mA h g-1 in the Li-S pouch cell under a high sulfur loading of 5.3 mg cm-2 and low electrolyte/sulfur ratio of 5 µL mg-1.

3.
Small ; 19(46): e2304076, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37464549

RESUMO

Plasma treatment and reduction are used to synthesize Pt nanoparticles (NPs) on nitrogen-doped carbon nanotubes (p-Pt/p-NCNT) with a low Pt content. In particular, the plasma treatment is used to treat the NCNT to give it with more surface defects, facilitating a better growth of the Pt NPs, while the plasma reduction produces the Pt NPs with a reduced fraction of the surface atoms at the high oxidation states, increasing the catalytic activities of the p-Pt@p-NCNT. Even at the low Pt content (7.8 wt.%), the p-Pt@p-NCNT shows superior catalytic activities and good stabilities for methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR). The density functional theory (DFT) calculations indicate that the defects generated in the plasma treatment can help the growth of the Pt NPs on the NCNTs, leading to the stronger electronic coupling between Pt and NCNT and the increased stability of the catalyst. The plasma reduction can give the Pt NPs with optimized surface oxidation states, decreasing the energy barriers of the rate-determining steps for MOR and ORR. When used as the anode and cathode catalysts for the direct methanol fuel cells (DMFCs), the p-Pt@p-NCNT exhibits a higher maximum power density of 81.9 mW cm-2  at 80 °C and shows good durability.

4.
J Colloid Interface Sci ; 649: 36-48, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37331108

RESUMO

Developing high-efficient, good-durability, and low-cost bifunctional non-precious metal catalysts for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is urgent and significant for promoting the practical rechargeable zinc-air batteries (RZABs). Herein, N-doped carbon coated Co/FeCo@Fe(Co)3O4 heterojunction rich in oxygen vacancies derived from metal-organic frameworks (MOFs) is successfully constructed by O2 plasma treatment. The phase transition of Co/FeCo to FeCo oxide (Fe3O4/Co3O4) mainly occurs on the surface of nanoparticles (NPs) during the O2 plasma treatment, which can form rich oxygen vacancies simultaneously. The fabricated catalyst P-Co3Fe1/NC-700-10 with optimal O2 plasma treatment time of 10 min can reduce the potential gap between the OER and ORR to 760 mV, which is much lower than commercial 20% Pt/C + RuO2 (910 mV). Density functional theory (DFT) calculation indicates that the synergistic coupling between Co/FeCo alloy NPs and FeCo oxide layer can promote the ORR/OER performance. Both liquid electrolyte RZAB and flexible all-solid-state RZAB using P-Co3Fe1/NC-700-10 as the air-cathode catalyst display high power density, specific capacity and excellent stability. This work provides an effective idea for the development of high performance bifunctional electrocatalyst and the application of RZABs.

5.
Food Chem ; 404(Pt B): 134673, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36323026

RESUMO

In this work, we developed a new molecularly imprinted polymer detector for tartrazine's rapid and selective detection. Electropolymerisation using l-Methionine resulted in the polymer immobilised on the carbon fibre paper electrode's surface. MIP film was formed by electropolymerisation in the presence of the template tartrazine. The polymer frame comprises cavities after template removal, which can specifically bind to the analyte molecule. Without pre-treatment, the developed sensor MIPMet/CFP detects tartrazine in beverage samples precisely and rapidly. The sensor has a linear response in the concentration range of 0.6 nM- 160 nM, high sensitivity (601964 µAµM-1cm-2), and a low detection limit of 27 pM under optimum conditions. MIPMet/CFP sensor displayed the ability to distinguish target analyte from interferants selectively. The performance of the MIPMet/CFP sensor in assessing tartrazine in different saffron powder and packed juice samples suggests that it could be used to detect tartrazine fast and effectively.


Assuntos
Impressão Molecular , Tartrazina , Eletrodos , Aditivos Alimentares , Aminoácidos , Polímeros/química , Técnicas Eletroquímicas/métodos , Impressão Molecular/métodos , Limite de Detecção
6.
ACS Omega ; 7(23): 19183-19192, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35721942

RESUMO

In this report, a facile synthetic route is adopted for typically designing a hybrid electrocatalyst containing boron, nitrogen dual-doped reduced graphene oxide (B,N-rGO) and thiospinel CuCo2S4 (CuCo2S4@B,N-rGO). The electrocatalytic activity of the hybrid catalyst is tested with respect to oxygen evolution (OER) and oxygen reduction (ORR) reactions in alkali. Physicochemical characterizations confirm the unique formation of a reduced graphene oxide-non-noble-metal sulfide hybrid. Electrochemical evaluation by cyclic voltammetry (CV) and linear-sweep voltammetry (LSV) reveals that the CuCo2S4@B,N-rGO hybrid possesses enhanced ORR and OER activity compared to the B,N-rGO-free CuCo2S4 catalyst. The synthesized CuCo2S4@B,N-rGO hybrid demonstrates remarkable enhancement in catalytic performance with an improved onset potential (1.50 and 0.88 V) and low Tafel slope (112 and 73 mV dec-1) for both OER and ORR processes, respectively. In addition, the catalyst exhibits a diminutive potential difference (0.81 V) between the potential corresponding to the 10 mA cm-2 current density for OER and the half-wave potential for ORR. The superior catalytic activity and high durability of the hybrid material may be attributed to the synergistic effect arising from the metal sulfide and dual-doped reduced graphene oxide. The present study illuminates the possibility of using the dual-doped graphene oxide and metal sulfide hybrid as a competent bifunctional cathode catalyst for renewable energy application.

7.
ACS Omega ; 7(2): 1658-1670, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35071861

RESUMO

Electrospun nanocomposite polymer blend poly(vinylidene difluoride-co-hexafluoropropylene) (PVDF-HFP)/poly(methyl methacrylate) (PMMA) membranes with a novel dispersion of x wt % of one-dimensional (1D) TiO2 nanofiber fillers (x = 0.0-0.8 in steps of 0.2) were developed using the electrospinning technique. The developed nanocomposite polymer membranes were activated using various redox agents such as LiI, NaI, KI, and tetrabutyl ammonium iodide (TBAI). Introduction of the 1D TiO2 nanofiber fillers improves the amorphous nature of the blended polymer membrane, as confirmed through X-ray diffraction (XRD) and Fourier transform infrared (FTIR), and yielded an electrolyte uptake of over 480% for a 6 wt % TiO2 nanofiber filler-dispersed sample. PVDF-HFP/PMMA-1D 6 wt % TiO2 nanofiber fillers with the LiI-based redox electrolyte provided a high conductivity of 2.80 × 10-2 S cm-1 and a power conversion efficiency (PCE) of 8.08% to their fabricated dye-sensitized solar cells (DSSCs). The observed better ionic conductivity and efficiency of the fabricated DSSCs could be due to the faster movement of the smaller-ionic-radius (Li) ions entrapped inside the amorphous polymer. This enhanced mobility of ions in the quasi-solid electrolyte leads to faster regeneration of the depleting electrons in the photoanode, resulting in improved efficiency. Further, the achieved high conductivity was analyzed in terms of the dynamics and relaxation mechanisms involved by the ionic charge carriers with complex impedance spectroscopy using a random barrier model and Havriliak-Negami formulation. It was observed that the high-conducting PVDF-HFP/PMMA-1D 6 wt % TiO2 nanofiber fillers with LiI-based redox electrolyte show better ac conductivity parameters such as a σ of 5.82 × 10-2 S cm-1, ωe (12685 rad s-1), τe (0.909 × 10-4 s), and n (0.578). Also, dielectric studies revealed that the high-conducting sample has a higher dielectric constant and subsequently high loss. The J-V characteristics were studied using the equivalent circuit of a single-diode model, and the parameters influencing the photovoltaic performance were determined by Symbiotic Organisms Search (SOS) algorithm. The results suggest that the high-efficient sample possesses a minimum series resistance of 1.33 Ω and a maximum shunt resistance of 997 Ω. Hence, the highest-conducting electrospun-blended polymeric nanocomposite (PVDF-HFP-PMMA-6 wt % TiO2 nanofiber fillers) with LiI-based redox agent and tert-butyl pyridine (TBP) additive as the polymer quasi-solid electrolyte nanofibrous membrane can be a better electrolyte for high-performance dye-sensitized solar cell applications.

8.
ACS Omega ; 7(2): 1975-1987, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35071886

RESUMO

Electrochemical energy storage relies essentially on the development of innovative electrode materials with enhanced kinetics of ion transport. Pseudocapacitors are excellent candidates to bridge the performance gap between supercapacitors and batteries. Highly porous, anhydrous Ni0.5Co0.5C2O4 is envisaged here as a potential electrode for pseudocapacitor applications, mainly because of its open pore framework structure, which poses inherent structural stability due to the presence of planar oxalate anions (C2O4 2-), and active participation of Ni2+/3+ and Co2+/3+ results in high intercalative charge storage capacity in the aqueous KOH electrolyte. The Ni0.5Co0.5C2O4 electrode shows specific capacitance equivalent to 2396 F/g at 1 A/g in the potential window of 0.6 V in the aqueous 2 M KOH electrolyte by galvanostatic charge/discharge experiments. Predominant pseudocapacitive mechanism seems to operative behind high charge storage due to active participation of Ni2+/3+ and Co2+/3+ redox couple as intercalative (inner) and surface (outer) charges stored by porous anhydrous Co0.5Ni0.5C2O4 were close to high 38 and 62% respectively. Further, in full cell asymmetric supercapacitors (ASCs) in which porous anhydrous Co0.5Ni0.5C2O4 was used as the positive electrode and activated carbon (AC) was utilized as the negative electrode, in the operating potential window 1.6 V, the highest specific energy of 283 W h/kg and specific power of ∼817 W/kg were achieved at 1 A/g current rates. Even at a very high power density of 7981 W/kg, the hybrid supercapacitor still attains an energy density of ∼75 W h/kg with high cyclic stability at a 10 A/g current rate. The detailed electrochemical studies confirm higher cyclic stability and a superior electrochemical energy storage property of porous anhydrous Co0.5Ni0.5C2O4, making it a potential pseudocapacitive electrode for large energy storage applications.

9.
J Colloid Interface Sci ; 608(Pt 1): 207-218, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34626967

RESUMO

An efficient oxygen bifunctional catalyst Pt-Ru-Ir with ordered mesoporous nanostructures (OMNs) was successfully synthesized by chemical reduction using KIT-6 mesoporous silica as a template. The crystallographic behavior, electronic effects, and microstructure of the catalysts were investigated by XRD, XPS, SEM, and TEM analysis. The influence of OMNs and the effect of Ir content in Pt-Ru-Ir catalyst on both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) were investigated. The synergistic and electronic effects play an important role in electrocatalytic performance through the electronic coupling between Pt, Ru and Ir followed by the alloy formation with different lattice strain percentages. Amongst, the OMNs Pt70Ru25Ir5 catalyst exhibits the highest mass activity of 0.21 mA µg-1 and specific activity of 0.33 mA cm-2 for ORR, which are nearly 5-fold greater than those for benchmark Pt/C catalyst. Furthermore, the Pt70Ru25Ir5 demonstrated enhanced OER activity with an overpotential of 470 mV at 10 mA cm-2, an onset potential of 1.70 V, and a Tafel slope of 118 mV dec-1, outperforming commercial IrO2. In addition, the durability of the Pt70Ru25Ir5 catalyst for ORR and OER are found to be extended in comparison with that of other catalysts reported in this work after 6000 cycles. These results demonstrate that the ordered OMNs Pt-Ru-Ir with low Ir content (∼5 wt%) could be a promising oxygen bifunctional catalyst for electrochemical energy conversion and storage applications.

10.
ACS Omega ; 6(45): 30327-30334, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34805664

RESUMO

Ceramic fuel cells possess tremendous advantages over PMFCs due to their fuel flexibility and requirement of low-purity hydrogen. Despite high conversion efficiency, the high cost of ultra high-purity hydrogen required for the operation limits the application of PMFCs. Although ceramic fuel cells operate at elevated temperature, high performance coupled with multifuel flexibility makes ceramic fuel cells a superior option as a static power source to generate electricity compared to thermal coal-fired power plants. BaZr1-x Y x O3-x/2 based protonic conductors get a high degree of interest due to their superior structural stability, but their poor conductivity at higher temperature limits the performance of ceramic fuel cells. To overcome the low ionic conductivity issues of BaZrO3 based materials at elevated temperature, the simultaneous doping of smaller Ga on the Zr site and K on the Ba site was employed here to create higher concentration of oxide-ion vacancies for the realization of superior conductivities. The simultaneous substitution of K and Ga created the oxygen vacancy-type point defects resulting in higher ionic conductivity ∼10-2 S/cm above 650 °C. The conductivity represented here for the Ba0.8K0.2Zr0.8Ga0.2O2.8 sample is superior or equivalent to the conductivity obtained for yttria-stabilized zirconia, a well-known ceramic oxide-ion electrolyte.

11.
ACS Omega ; 6(45): 30488-30498, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34805678

RESUMO

The green energy alternative to a fossil fuel-based economy can be provided only by coupling renewable energy solution solutions such as solar or wind energy plants with large-scale electrochemical energy storage devices. Enabling high-energy storage coupled with high-power delivery can be envisaged though high-capacitive pseudocapacitor electrodes. A pseudocapacitor electrode with multiple oxidation state accessibility can enable more than 1e - charge/transfer per molecule to facilitate superior energy storage. K-doped LaFeO3 (La1-x K x FeO3-δ) is presented here as an electrode having a high pseudocapacitance storage, equivalent to 1.32e - charge/transfer per molecule, resulting in a capacity equivalent of 662 F/g at 1 mV/s scan rate by introduction of a layered potential over the Fe-ion octahedral to utilize higher redox state energies (Fe4+→ Fe2+). La/K ordering in orthorhombic perovskite (La1-x K x FeO3-δ) made the Fe4+ oxidation state accessible, and a systematic shift in the redox energies of Fe4+/3+ and Fe3+/2+ redox couples was observed with K+ ion doping in the A site of the LaFeO3 perovskite, which resulted in a high faradic contribution to the capacitance, coupled with anionic intercalation of H2O/OH- in the host perovskite lattice. The surface capacitive and diffusion control contributions for capacitance are about 42 and 58%, respectively, at -0.6 V, with a scan rate of 1  mV/s. A high gravimetric capacitance, equivalent to 619, 347, 188, 121, and 65 F/g, respectively, at 1, 2, 3, 5, and 10 A/g constant current, was observed for the La0.5K0.5FeO3-δ electrode. Up to 88.9% capacitive retention and 97% Coulombic efficacy were obtained for continuous 5000 cycles of charge/discharge for the La0.5K0.5FeO3-δ electrode. The gravimetric capacitance values of ASCs (activated carbon//La0.5K0.5FeO3-δ) are 348, 290, 228, and 147 F/g at current densities of 1, 2, 3, and 5 A/g, respectively. A maximum specific power of ∼3594 W/kg was obtained when the specific energy reached ∼117 Wh/kg at 5 A/g of current density.

12.
Adv Sci (Weinh) ; 8(10): 2004572, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34026452

RESUMO

This work reports a novel approach for the synthesis of FeCo alloy nanoparticles (NPs) embedded in the N,P-codoped carbon coated nitrogen-doped carbon nanotubes (NPC/FeCo@NCNTs). Specifically, the synthesis of NCNT is achieved by the calcination of graphene oxide-coated polystyrene spheres with Fe3+, Co2+ and melamine adsorbed, during which graphene oxide is transformed into carbon nanotubes and simultaneously nitrogen is doped into the graphitic structure. The NPC/FeCo@NCNT is demonstrated to be an efficient and durable bifunctional catalyst for oxygen evolution (OER) and oxygen reduction reaction (ORR). It only needs an overpotential of 339.5 mV to deliver 10 mA cm-2 for OER and an onset potential of 0.92 V to drive ORR. Its bifunctional catalytic activities outperform those of the composite catalyst Pt/C + RuO2 and most bifunctional catalysts reported. The experimental results and density functional theory calculations have demonstrated that the interplay between FeCo NPs and NCNT and the presence of N,P-codoped carbon structure play important roles in increasing the catalytic activities of the NPC/FeCo@NCNT. More impressively, the NPC/FeCo@NCNT can be used as the air-electrode catalyst, improving the performance of rechargeable liquid and flexible all-solid-state zinc-air batteries.

13.
Talanta ; 209: 120511, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31892041

RESUMO

An electrochemical immuno-nanogenosensor is developed based on noble-metal-free nickel phosphate nanostructure (NiPNs) as an excellent biocompatible material for miRNA detection in blood serum and urine samples without using indicators for the first time. The pompon flower-like morphology of NiPNs is synthesized, and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction pattern (XRD), fourier transform-infrared spectroscopy (FT-IR), and electrochemical impedance methods. The novel NiPNs nanostructured interface was constructed by coordinate covalent bonding between Ni and phosphate group of probe DNA. The constructed NiPNs-p-DNA surface served as the amplified hybridization platform enabling efficient access to numerous target microRNA sequences. As a result, the developed NiPFNs biosensing platform displayed excellent sensitivity, selectivity, and ultralow experimental limit-of-detection (LOD) of 0.034 pM (S/N = 3) as compared with other Ni phosphide nanostructures. This simple and efficient approach is highly suitable for the development of point-of-care detection systems. To the extent of our knowledge, this is the first report on trace level detection of miRNAs employing non-noble Ni metal nanostructures based biosensing platform.


Assuntos
MicroRNAs/sangue , MicroRNAs/urina , Nanoestruturas/química , Níquel/química , Fosfatos/química , Técnicas Biossensoriais/métodos , DNA/química , DNA/genética , Sondas de DNA/química , Sondas de DNA/genética , Espectroscopia Dielétrica , Limite de Detecção , MicroRNAs/genética , Hibridização de Ácido Nucleico
14.
ACS Sens ; 4(7): 1934-1941, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31268302

RESUMO

Rapid and accurate determination of disinfection byproducts (DBPs) has become an emerging need for environmental monitoring and has yet to be realized in electrochemical sensors with metal organic framework (MOF)-based materials. In this study, a highly sensitive electrochemical sensor for trichloroacetic acid (TCAA) detection based on iron(II) phthalocyanine (PcFe) and a Zn-based metal organic framework (ZIF-8) composite is fabricated. As an electrode material, ZIF-8 possesses a large surface area and porous structure, which exhibits high absorbability; meanwhile, PcFe (II), as the sensing element, undergoes a reduction process from PcFe (II) to PcFe (I) during the sensing process. In the presence of TCAA, PcFe (I) is reoxidized by TCAA, which shifts the reaction equilibrium and accelerates the electron transfer on the electrode interface. By analyzing the reduction current of PcFe (II), the quantitative detection of TCAA is realized. The sensor shows a limit of detection (LOD) of 1.89 nM, which is superior to other reported TCAA sensors, as well as a high sensitivity (826 µΑ/µM). Moreover, the good selectivity and stability of this sensing platform demonstrate its capability and promise in determination of trace DBPs. The reported sensor provides a new strategy for electrochemical detection of DBPs and could expand the applications of MOFs in emerging technologies for monitoring contaminants.


Assuntos
Técnicas Eletroquímicas/métodos , Indóis/química , Estruturas Metalorgânicas/química , Nanocompostos/química , Compostos Organometálicos/química , Ácido Tricloroacético/análise , Técnicas Eletroquímicas/instrumentação , Eletrodos , Limite de Detecção , Oxirredução , Ácido Tricloroacético/química , Zinco/química
15.
Anal Chem ; 91(9): 5824-5833, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30917656

RESUMO

In this work, we report a new biosensing platform for hepatitis B virus (HBV) DNA genosensing using cobalt oxide (Co3O4) nanostructures. The tunable morphologies of Co3O4 nanostructures such as porous nanocubes (PNCs), nanooctahedra (NOHs), and nanosticks (NSKs) are synthesized, and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) patterns, nitrogen adsorption/desorption isotherms (BET), and electrochemical impedance spectral (EIS) methods. The HBV probe DNA (ssDNA) is immobilized on the Co3O4 nanostructures through coordinate bond formation between nucleic acid of ssDNA and Co metal, which results in highly stable nanostructured biosensing platform. To the best of our knowledge, first time the target cDNA of HBV is detected using ssDNA/Co3O4PNCs/GCE electrode by EIS method with a limit of detection (LOD) of 0.38 pM (signal-to-noise ratio (S/N) = 3). Moreover, the ssDNA/Co3O4PNCs/GCE has shown excellent specificity to HBV target cDNA, compared with noncomplementary DNA, and 1- and 3-mismatch DNAs. Finally, we explore ssDNA/Co3O4PNCs/GCE as potential electrode to test HBV DNA in blood serum and urine samples for practical applications.


Assuntos
Técnicas Biossensoriais/métodos , Cobalto/química , DNA Viral/sangue , DNA Viral/urina , Vírus da Hepatite B/genética , Hepatite B/diagnóstico , Nanoestruturas/química , Óxidos/química , DNA Viral/genética , Técnicas Eletroquímicas/métodos , Hepatite B/sangue , Hepatite B/urina , Vírus da Hepatite B/isolamento & purificação , Humanos
16.
Sci Rep ; 7(1): 15342, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29127411

RESUMO

The influence of (nickel nitrate/citric acid) mole ratio on the formation of sol-gel end products was examined. The formed Ni/NiO nanoparticle was anchored on to reduced graphene-oxide (rGO) by means of probe sonication. It was found that the sample obtained from the (1:1) nickel ion: citric acid (Ni2+: CA) mole ratio resulted in a high specific capacity of 158 C/g among all (Ni2+: CA) ratios examined. By anchoring Ni/NiO on to the rGO resulted in enhanced specific capacity of as high as 335 C/g along with improved cycling stability, high rate capability and Coulombic efficiency. The high conductivity and increased surface area seemed responsible for enhanced electrochemical performances of the Ni/NiO@rGO nanocomposite. A solid-state hybrid energy-storage device consisting of the Ni/NiO@rGO (NR2) as a positive electrode and the rGO as negative electrode exhibited enhanced energy and power densities. Lighting of LED was demonstrated by using three proto-type (NR2(+)|| rGO(-)) hybrid devices connected in series.

17.
Analyst ; 142(22): 4299-4307, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29039429

RESUMO

The demand for electrochemical sensors with high sensitivity and reliability, fast response, and excellent selectivity has stimulated intensive research on developing highly active nanomaterials. In this work, freestanding 3D/Co3O4 thorn-like and wire-like (nanowires) nanostructures are directly grown on a flexible carbon fiber paper (CFP) substrate by a single-step hydrothermal process without using surfactants or templates. The 3D/Co3O4 thorn-like nanostructures show higher electrochemical activity than wire-like because of their high conductivity, large specific surface areas, and mesopores on their surface. The characterization of 3D/Co3O4 nanostructures is performed by using high resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction analysis (XRD), and electrochemical methods. The 3D/Co3O4 thorn-like nanostructures displayed non-enzymatic higher catalytic activity towards the electrochemical detection of glucose, compared to the 3D/Co3O4 wire-like morphology. The 3D/Co3O4 thorn-like nanostructures show a wide linear range response of glucose concentration ranging from 1 to 1000 µM with a detection limit of 0.046 µM (S/N = 3). The 3D/Co3O4 thorn-like nanostructure-modified CFP electrode selectively detects glucose in the presence of 100-fold excess of interfering compounds. The 3D/Co3O4 thorn-like nanostructure-modified CFP electrode is tested with human blood serum samples and validated with commercial glucose sensors. The newly developed sensor material shows potential for glucose monitoring in clinical and food samples.


Assuntos
Técnicas Biossensoriais , Carbono , Cobalto/química , Glucose/análise , Nanoestruturas , Óxidos/química , Glicemia , Automonitorização da Glicemia , Humanos , Reprodutibilidade dos Testes
18.
Nanoscale ; 8(13): 6921-47, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26980404

RESUMO

Recently, there has been tremendous progress in the field of nanodimensional conducting polymers with the objective of tuning the intrinsic properties of the polymer and the potential to be efficient, biocompatible, inexpensive, and solution processable. Compared with bulk conducting polymers, conducting polymer nanostructures possess a high electrical conductivity, large surface area, short path length for ion transport and superior electrochemical activity which make them suitable for energy storage and conversion applications. The current status of polymer nanostructure fabrication and characterization is reviewed in detail. The present review includes syntheses, a deeper understanding of the principles underlying the electronic behavior of size and shape tunable polymer nanostructures, characterization tools and analysis of composites. Finally, a detailed discussion of their effectiveness and perspectives in energy storage and solar light harvesting is presented. In brief, a broad overview on the synthesis and possible applications of conducting polymer nanostructures in energy domains such as fuel cells, photocatalysis, supercapacitors and rechargeable batteries is described.

19.
Nanoscale ; 8(2): 843-55, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26578259

RESUMO

Three-dimensional nickel-iron (3-D/Ni-Fe) nanostructures are exciting candidates for various applications because they produce more reaction-active sites than 1-D and 2-D nanostructured materials and exhibit attractive optical, electrical and catalytic properties. In this work, freestanding 3-D/Ni-Fe interconnected hierarchical nanosheets, hierarchical nanospheres, and porous nanospheres are directly grown on a flexible carbon fiber paper (CFP) substrate by a single-step hydrothermal process. Among the nanostructures, 3-D/Ni-Fe interconnected hierarchical nanosheets show excellent electrochemical properties because of its high conductivity, large specific active surface area, and mesopores on its walls (vide infra). The 3-D/Ni-Fe hierarchical nanosheet array modified CFP substrate is further explored as a novel electrode for electrochemical non-enzymatic glucose sensor application. The 3-D/Ni-Fe hierarchical nanosheet arrays exhibit significant catalytic activity towards the electrochemical oxidation of glucose, as compared to the 3-D/Ni-Fe hierarchical nanospheres, and porous nanospheres. The 3-D/Ni-Fe hierarchical nanosheet arrays can access a large amount of glucose molecules on their surface (mesopore walls) for an efficient electrocatalytic oxidation process. Moreover, 3-D/Ni-Fe hierarchical nanosheet arrays showed higher sensitivity (7.90 µA µM(-1) cm(-2)) with wide linear glucose concentration ranging from 0.05 µM to 0.2 mM, and the low detection limit (LOD) of 0.031 µM (S/N = 3) is achieved by the amperometry method. Further, the 3-D/Ni-Fe hierarchical nanosheet array modified CFP electrode can be demonstrated to have excellent selectivity towards the detection of glucose in the presence of 500-fold excess of major important interferents. All these results indicate that 3-D/Ni-Fe hierarchical nanosheet arrays are promising candidates for non-enzymatic glucose sensing.


Assuntos
Carbono/química , Glucose/análise , Ferro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Níquel/química , Fibra de Carbono , Cobre/química , Análise Custo-Benefício , Capacitância Elétrica , Eletroquímica , Eletrodos , Eletrólitos/química , Humanos , Hidróxidos/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanotecnologia , Nanotubos de Carbono/química , Porosidade , Compostos de Potássio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Têxteis
20.
Nanoscale ; 6(19): 11169-76, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25119261

RESUMO

Numerous properties from metal nanostructures can be tuned by controlling both their size and shape. In particular, the latter is extremely important because the type of crystalline surface affects the surface electronic density. This paper describes a simple approach to the synthesis of highly-structured, anisotropic palladium nanostructured dendrites. They were obtained using an eco-friendly biomolecule 5-hydroxytryptophan, which acts as both a reducing and stabilizing agent. The growth mechanism is proposed for the evolution of dendrites morphology. It was found that the concentration of 5-hydroxytryptophan played a vital role on the morphology of the nanostructured Pd dendrites. This nanomaterial shows enhanced electrocatalytic performance towards the oxidation of formic acid, and it exhibits surface-enhanced Raman scattering properties towards the prostate specific antigen. These properties may be explored in fuel cells and biosensors, respectively.


Assuntos
Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Paládio/química , Ressonância de Plasmônio de Superfície/métodos , Catálise , Dendrímeros/síntese química , Dendrímeros/efeitos da radiação , Eletroquímica/métodos , Campos Eletromagnéticos , Luz , Teste de Materiais , Nanopartículas Metálicas/efeitos da radiação , Paládio/efeitos da radiação , Tamanho da Partícula , Espalhamento de Radiação , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...