Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacopsychiatry ; 39(1): 1-8, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16453246

RESUMO

INTRODUCTION: We wanted to elucidate whether the proposed advantages of citalopram-buspirone combination treatment are related to changes in 5-HT(2A/C) receptor-mediated neurotransmission. METHODS: The affinity of buspirone to 5-HT2A and 5-HT2C receptors was measured in vitro, and the influence of buspirone on 5-HT2C receptor-mediated phosphoinositide hydrolysis was estimated. Four groups of rats received citalopram (10 mg/kg), buspirone (6 mg/kg), citalopram-buspirone combination, or saline once a day s.c. for 14 days. Treatment effects on 5-HT2A and 5-HT2C receptors were investigated by receptor autoradiography with antagonist and agonist radioligands. RESULTS: Buspirone was found to be a weak 5-HT2C receptor antagonist, with a low affinity for 5-HT2A and 5-HT2C receptors. Repeated buspirone-citalopram combination treatment markedly decreased [3H]ketanserin and [125I]DOI binding to 5-HT2A receptors. Repeated administration of buspirone and buspirone-citalopram combination increased the affinity of [3H]mesulergine toward 5-HT2C receptors, and buspirone-citalopram combination also decreased [125I]DOI binding to 5-HT2C receptors. DISCUSSION: We suggest that downregulation of brain 5-HT2A receptors and possibly of 5-HT2C receptor agonist sites is involved in the beneficial clinical effects of buspirone-SSRI augmentation treatment. Furthermore, a conversion of brain 5-HT2C receptors from high- to low-affinity state may provide an additional mechanism for the anti-anxiety effects of buspirone.


Assuntos
Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Química Encefálica/efeitos dos fármacos , Buspirona/farmacologia , Citalopram/farmacologia , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/efeitos dos fármacos , Anfetaminas/farmacologia , Animais , Autorradiografia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Plexo Corióideo/efeitos dos fármacos , Plexo Corióideo/metabolismo , Ergolinas/farmacologia , Hidrólise , Processamento de Imagem Assistida por Computador , Ketanserina/farmacologia , Masculino , Fosfatidilinositóis/metabolismo , Ratos , Ratos Sprague-Dawley , Antagonistas da Serotonina/farmacologia
2.
Psychopharmacology (Berl) ; 157(2): 180-7, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11594443

RESUMO

RATIONALE: Sertindole is a novel antipsychotic drug with high affinity for dopamine D2, alpha-1-adrenoceptors and serotonin 5-HT2A and 5-HT2c receptors. The 5-HT2c receptor component of sertindole may be clinically relevant as this receptor subtype is implicated in regulation of anxiety, cognition/memory and brain plasticity. OBJECTIVE: To characterise the interaction of sertindole with the 5-HT2C receptor using rat choroid plexus as a physiological receptor source. RESULTS: Sertindole had nanomolar affinity for the 5-HT2c receptor in vitro. Sertindole antagonised 5-HT-stimulated phosphoinositide (PI) hydrolysis and, like clozapine, also inhibited basal PI hydrolysis suggesting that sertindole is a 5-HT2C receptor inverse agonist. The effect of repeated sertindole dosing on 5-HT2C receptors was studied in rats treated for 21 days with sertindole (20, 300 and 1250 microg/kg/day). Clozapine (25 mg/kg/day) was used as a comparison drug. 5-HT2C receptor binding in the choroid plexus was measured with antagonist and agonist ligands ([3H]mesulergine and [125I]DOI) using quantitative autoradiography 8 days after withdrawal. Clozapine decreased 5-HT2C receptor antagonist and agonist binding sites equally by 36% and 32%, respectively. Sertindole did not induce significant changes in the total number of 5-HT2C receptors, but the highest dose of sertindole lowered the affinity of [3H]mesulergine for 5-HT2C receptors. This was most likely due to residual sertindole levels in the brain which was supported by direct concentration measurements. In contrast, sertindole induced a highly significant and dose-related decrease in 5-HT2C agonist binding (up to 77%). Neither drug affected striatal D2 receptor binding. CONCLUSIONS: Sertindole, like clozapine, was found to be a serotonin 5-HT2C receptor inverse agonist. The preferential downregulation of 5-HT2C receptor agonist (G-protein-coupled) sites by chronic administration seemed to differentiate sertindole from clozapine at these dose regimens. The 5-HT2c receptor downregulation during repeated dosing may contribute to therapeutic efficacy and/or side effects of sertindole treatment.


Assuntos
Antipsicóticos/farmacologia , Imidazóis/farmacologia , Indóis/farmacologia , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Animais , Sítios de Ligação/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2C de Serotonina , Agonistas do Receptor de Serotonina/metabolismo
3.
Psychopharmacology (Berl) ; 136(2): 99-104, 1998 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9551765

RESUMO

Deramciclane (EGIS-3886) is a novel anxiolytic agent that binds with high affinity to 5-HT2A/2C receptors. The interactions of deramciclane with the serotonin 5-HT2C receptor were characterized further using receptor phosphoinositide hydrolysis assays and receptor autoradiography. Deramciclane antagonized 5-HT2C receptor mediated 5-HT-stimulated phosphoinositide hydrolysis with an IC50 value of 168 nM. Deramciclane also decreased basal phosphoinositide hydrolysis by up to 33% (EC50 = 93 nM) in a physiological system in the choroid plexus, suggesting that deramciclane possesses inverse agonist properties at this receptor. Administration of single doses of 0.5 mg/kg and 10 mg/kg resulted in a maximal 5-HT2C receptor occupancy of up to 45% and 79%, respectively, in the choroid plexus. Chronic (14 days) treatment with 0.5 mg/kg or 10 mg/kg deramciclane did not alter [125I]DOI (agonist) or [3H]mesulergine (antagonist) binding to 5-HT2C receptors in the choroid plexus compared to saline-treated controls, as determined by quantitative receptor autoradiography. In comparison, the effects of deramciclane on 5-HT2A binding characteristics and receptor occupancy were also studied. Deramciclane treatment resulted in 5-HT2A receptor occupancy of up to 78%, but no significant effect of chronic treatment on 5-HT2A receptor agonist binding levels was found. In conclusion, these data indicate that deramciclane is a 5-HT2C receptor inverse agonist and occupies 5-HT2C receptors during treatment, and that chronic treatment with deramciclane does not lead to 5-HT2C receptor down-regulation.


Assuntos
Ansiolíticos/farmacologia , Encéfalo/efeitos dos fármacos , Canfanos/farmacologia , Receptores de Serotonina/efeitos dos fármacos , Antagonistas da Serotonina/farmacologia , Animais , Encéfalo/metabolismo , Clozapina/farmacologia , Fosfatos de Inositol/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina , Receptor 5-HT2C de Serotonina , Receptores de Serotonina/metabolismo
4.
Psychopharmacology (Berl) ; 126(3): 234-40, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8876023

RESUMO

Interactions of the selective serotonin reuptake inhibitors (SSRIs) citalopram, fluoxetine and its main metabolite norfluoxetine, and the tricyclic antidepressant (TCA) imipramine with the rat serotonin 5-HT2C receptor in a clonal cell line and in the rat choroid plexus were investigated by radioligand binding and phosphoinositide (PI) hydrolysis assays. For comparison, the affinities of a variety of other antidepressants of different chemical classes for the cloned rat 5-HT2C and 5-HT2A receptors were also determined by radioligand binding assays. Fluoxetine displayed relatively high affinity for the 5-HT2C receptor in the choroid plexus, with a Ki value for inhibition of [3H]mesulergine binding of 55.4 nM. The Ki values for imipramine, norfluoxetine and citalopram were 136 nM, 203 nM, and 298 nM, respectively. Similar rank order of potency was detected in PI hydrolysis assays, which showed that these drugs are antagonists at the 5-HT2C receptor without exhibiting inverse agonist activity. [3H]Ketanserin (5-HT2A) binding assays revealed that the SSRIs fluoxetine, norfluoxetine and citalopram show 10- to 23-fold selectivity for the 5-HT2C receptor in vitro, whereas the TCA imipramine does not. Many other TCAs also had high to intermediate affinity for both 5-HT2A and 5-HT2C receptors. The present data provide evidence that fluoxetine, norfluoxetine and citalopram, along with many other antidepressant compounds, interact directly with the 5-HT2C receptor.


Assuntos
Citalopram/farmacologia , Fluoxetina/análogos & derivados , Fluoxetina/farmacologia , Receptores de Serotonina/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Animais , Antidepressivos Tricíclicos/farmacologia , Plexo Corióideo/metabolismo , Imipramina/farmacologia , Masculino , Fosfatidilinositóis/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2C de Serotonina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...