Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38885349

RESUMO

Over-consumption of iron-rich red meat and hereditary or genetic iron overload are associated with increased risk of colorectal carcinogenesis, yet the mechanistic basis of how metal-mediated signaling leads to oncogenesis remains enigmatic. Using fresh colorectal cancer (CRC) samples we identify Pirin, an iron sensor, that overcomes a rate-limiting step in oncogenesis, by re-activating the dormant human-reverse-transcriptase (hTERT) subunit of telomerase holoenzyme in an iron-(Fe3+)-dependent-manner and thereby drives CRCs. Chemical genetic screens combined with isothermal-dose response fingerprinting and mass-spectrometry identified a small molecule SP2509, that specifically inhibits Pirin-mediated hTERT reactivation in CRCs by competing with iron-(Fe3+) binding. Our findings, first to document how metal ions reactivate telomerase, provide a molecular mechanism for the well-known association between red meat, and increased incidence of CRCs. Small molecules like SP2509 represent a novel modality to target telomerase that acts as driver of 90% human cancers and is yet to be targeted in clinic.

2.
Arch Virol ; 167(7): 1571-1576, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35546377

RESUMO

Contagious pustular dermatitis is a disease that primarily infects small ruminants and possesses zoonotic potential. It is caused by orf virus (ORFV), a member of the genus Parapoxvirus. In this study, we evaluated an ORFV outbreak in goats in Madhya Pradesh, a state in central India, during 2017. The transboundary potential of this virus was evaluated by constructing phylogenetic trees. The complete genome sequence of an ORFV isolate named Ind/MP/17 was found to be 139,807 bp in length with 63.7% GC content and 132 open reading frames (ORFs) flanked by 3,910-bp inverted terminal repeats (ITRs). An investigation into evolutionary parameters such as selection pressure (θ = dN/dS) and nucleotide diversity (π) demonstrated that ORFV has undergone purifying selection. A total of 40 recombination events were identified, 21 of which were evident in the Ind/MP/17 genome, indicating its ability to generate new variants.


Assuntos
Ectima Contagioso , Vírus do Orf , Animais , Ectima Contagioso/epidemiologia , Genômica , Cabras , Vírus do Orf/genética , Filogenia , Recombinação Genética , Ovinos
3.
3 Biotech ; 12(5): 113, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35497507

RESUMO

Microsatellite markers or Simple Sequence Repeats (SSRs) are gaining importance for molecular characterization of the virus as well as estimation of evolution patterns due to its high-polymorphic nature. The Avipoxvirus is the causative agent of pox-like lesions in more than 300 birds and one of the major diseases for the extinction of endangered avian species. Therefore, we conducted a genome-wide analysis to decipher the type, distribution pattern of 14 complete genomes derived from the Avipoxvirus genus. The in-silico screening deciphered the existence of 917-2632 SSRs per strain. In the case of compound SSRs (cSSRs), the value was obtained 44-255 per genome. Our analysis indicates that the di-nucleotide repeats (52.74%) are the most abundant, followed by the mononucleotides (34.79), trinucleotides (11.57%), tetranucleotides (0.64%), pentanucleotides (0.12%) and hexanucleotides (0.15%) repeats. The specific parameters like Relative Abundance (RA) and Relative Density (RD) of microsatellites ranged within 5.5-8.12 and 33.08-53.58 bp/kb. The analysis of RA and RD value of compound microsatellites resulted between 0.25-0.82 and 4.64-15.12 bp/kb. The analysis of motif composition of cSSR revealed that most of the compound microsatellites were made up of two microsatellites, with some unique duplicated pattern of the motif like, (TA)-x-(TA), (TCA)-x-(TCA), etc. and self-complementary motifs, such as (TA)-x-(AT). Finally, we validated forty sets of compound microsatellite markers through an in-vitro approach utilizing clinical specimens and mapping the sequencing products with the database through comparative genomics approaches. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03169-4.

4.
Mol Ther Nucleic Acids ; 23: 691-701, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33575115

RESUMO

Zika virus (ZIKV), a mosquito-transmitted Flavivirus, emerged in the last decade causing serious diseases and affecting human health globally. Currently, no licensed vaccines or antivirals are available to combat ZIKV, although several vaccine candidates are in the pipeline. In recent years, the presence of non-canonical G-quadruplex (GQ) secondary structures in viral genomes has ignited significant attention as potential targets for antiviral strategy. In this study, we identified several novel conserved potential GQ structures by analyzing published ZIKV genome sequences using an in-house algorithm. Biophysical and biochemical analysis of the RNA sequences containing these potential GQ sequences suggested the existence of such structures in the ZIKV genomes. Studies with known GQ structure-binding and -stabilizing ligands such as Braco-19 and TMPyP4 provided support for this contention. The presence of these ligands in cell culture media led to significant inhibition of infectious ZIKV yield, as well as reduced viral genome replication and viral protein production. Overall, our results, for the first time, show that ZIKV replication can be inhibited by GQ structure-binding and -stabilizing compounds and suggest a new strategy against ZIKV infection mitigation and control.

5.
Infect Genet Evol ; 87: 104648, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264668

RESUMO

Novel SARS coronavirus (SARS-CoV-2) has caused a pandemic condition worldwide. It has been declared as a public health emergency of international concern by WHO in a very short span of time. The community transmission of this highly infectious virus has severely affected various parts of China, Italy, Spain, India, and USA, among others. The prophylactic solution against SARS-CoV-2 infection is challenging due to the high mutation rate of its RNA genome. Herein, we exploited a next-generation vaccinology approach to construct a multi-epitope vaccine candidate against SARS-CoV-2 that is predicted to have high antigenicity, safety, and efficacy to combat this deadly infectious agent. The whole proteome was scrutinized for the screening of highly conserved, antigenic, non-allergen, and non-toxic epitopes having high population coverage that can elicit both humoral and cellular mediated immune response against COVID-19 infection. These epitopes along with four different adjuvants, were utilized to construct a multi-epitope-vaccine candidate that can generate strong immunological memory response having high efficacy in humans. Various physiochemical analyses revealed the formation of a stable vaccine product having a high propensity to form a protective solution against the detrimental SARS-CoV-2 strain with high efficacy. The vaccine candidate interacted with immunological receptor TLR3 with a high affinity depicting the generation of innate immunity. Further, the codon optimization and in silico expression show the plausibility of the high expression and easy purification of the vaccine product. Thus, this present study provides an initial platform for the rapid generation of an efficacious protective vaccine for combating COVID-19.


Assuntos
Vacinas contra COVID-19 , COVID-19/prevenção & controle , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/imunologia , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Humanos , Simulação de Acoplamento Molecular , Glicoproteína da Espícula de Coronavírus/isolamento & purificação
6.
J Biomol Struct Dyn ; 39(4): 1461-1480, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32093573

RESUMO

Nipah virus (NPV) is one of the most notorious viruses with a very high fatality rate. Because of the recurrent advent of this virus and its severe neurological implications, often leading to high mortality, the WHO R&D Blueprint, 2018 has listed the Nipah virus as one of the emerging infectious diseases requiring urgent research and development effort. Yet there is a major layback in the development of effective vaccines or drugs against NPV. In this study, we have designed a stable multivalent vaccine combining several T-cell and B-cell epitopes of the essential Nipah viral proteins with the help of different ligands and adjuvants which can effectively induce both humoral and cellular immune responses in human. Different advanced immune-informatic tools confirm the stability, high immunogenicity and least allergenicity of the vaccine candidate. The standard molecular dynamic cascade analysis validates the stable interaction of the vaccine construct with the human Toll-like receptor 3 (TLR3) complex. Later, codon optimization and in silico cloning in a known pET28a vector system shows the possibility for the expression of this vaccine in a simple organism like E.coli. It is believed that with further in vitro and in vivo validation, this vaccine construct can pose to be a better prophylactic solution to the Nipah viral disease. Communicated by Ramaswamy H. Sarma.


Assuntos
Vírus Nipah , Epitopos de Linfócito B , Epitopos de Linfócito T , Humanos , Simulação de Acoplamento Molecular , Vírus Nipah/genética , Vacinas de Subunidades Antigênicas
7.
Front Genet ; 11: 935, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101360

RESUMO

Vibrio cholerae, a gram-negative bacterium that causes cholera, has already caused seven major pandemics across the world and infects roughly 1.3-4 million people every year. Cholera treatment primarily involves oral rehydration therapy supplemented with antibiotics. But recently, multidrug-resistant strains of V. cholerae have emerged. High genomic plasticity further enhances the pathogenesis of this human pathogen. Guanines in DNA or RNA assemble to form G-quadruplex (GQ) structures which have begun to be seen as potential drug targeting sites for different pathogenic bacteria and viruses. In this perspective, we carried out a genome-wide hunt in V. cholerae using a bio-informatics approach and observed ∼85 G-quadruplex forming motifs (VC-PGQs) in chromosome I and ∼45 putative G-quadruplexs (PGQs) in chromosome II. Ten putative G-quadruplex forming motifs (VC-PGQs) were selected on the basis of conservation throughout the genus and functional analysis displayed their location in the essential genes encoding bacterial proteins, for example, methyl-accepting chemotaxis protein, orotate phosphoribosyl transferase protein, amidase proteins, etc. The predicted VC-PGQs were validated using different bio-physical techniques, including Nuclear Magnetic Resonance spectroscopy, Circular Dichroism spectroscopy, and electrophoretic mobility shift assay, which demonstrated the formation of highly stable GQ structures in the bacteria. The interaction of these VC-PGQs with the known specific GQ ligand, TMPyP4, was analyzed using ITC and molecular dynamics studies that displayed the stabilization of the VC-PGQs by the GQ ligands and thus represents a potential therapeutic strategy against this enteric pathogen by inhibiting the PGQ harboring gene expression, thereby inhibiting the bacterial growth and virulence. In summary, this study reveals the presence of conserved GQ forming motifs in the V. cholerae genome that has the potential to be used to treat the multi-drug resistance problem of the notorious enteric pathogen.

8.
Sci Rep ; 10(1): 13852, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807836

RESUMO

Genome-wide in-silico identification of microsatellites or simple sequence repeats (SSRs) in the Orf virus (ORFV), the causative agent of contagious ecthyma has been carried out to investigate the type, distribution and its potential role in the genome evolution. We have investigated eleven ORFV strains, which resulted in the presence of 1,036-1,181 microsatellites per strain. The further screening revealed the presence of 83-107 compound SSRs (cSSRs) per genome. Our analysis indicates the dinucleotide (76.9%) repeats to be the most abundant, followed by trinucleotide (17.7%), mononucleotide (4.9%), tetranucleotide (0.4%) and hexanucleotide (0.2%) repeats. The Relative Abundance (RA) and Relative Density (RD) of these SSRs varied between 7.6-8.4 and 53.0-59.5 bp/kb, respectively. While in the case of cSSRs, the RA and RD ranged from 0.6-0.8 and 12.1-17.0 bp/kb, respectively. Regression analysis of all parameters like the incident of SSRs, RA, and RD significantly correlated with the GC content. But in a case of genome size, except incident SSRs, all other parameters were non-significantly correlated. Nearly all cSSRs were composed of two microsatellites, which showed no biasedness to a particular motif. Motif duplication pattern, such as, (C)-x-(C), (TG)-x-(TG), (AT)-x-(AT), (TC)- x-(TC) and self-complementary motifs, such as (GC)-x-(CG), (TC)-x-(AG), (GT)-x-(CA) and (TC)-x-(AG) were observed in the cSSRs. Finally, in-silico polymorphism was assessed, followed by in-vitro validation using PCR analysis and sequencing. The thirteen polymorphic SSR markers developed in this study were further characterized by mapping with the sequence present in the database. The results of the present study indicate that these SSRs could be a useful tool for identification, analysis of genetic diversity, and understanding the evolutionary status of the virus.


Assuntos
Genoma Viral , Repetições de Microssatélites/genética , Vírus do Orf/genética , Polimorfismo Genético , Simulação por Computador , Evolução Molecular , Variação Genética , Reação em Cadeia da Polimerase
9.
Virus Res ; 283: 197960, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32289341

RESUMO

The G-quadruplex (GQ) motifs have recently been gaining prominence because of their role as gene cis-regulatory elements in a variety of organisms and as potential druggable targets for anti-cancer therapy and ageing. Several studies have demonstrated the existence of GQs in the genomes of emerging and re-emerging human pathogens, such as hepatitis virus, herpesviruses, Ebola virus, Zika virus and Nipah virus. Human Adenovirus (HAdV) exhibits a large number of clinical manifestations especially infecting the children and the immunocompromised patients. Moreover, the HAdV-based vectors have been widely used to deliver foreign DNAs to cells in gene therapy. However, the DNA secondary structural elements in AdV-based vectors could significantly determine the gene delivery efficacy of the vectors. In this study, using a combination of whole genome sequence analysis, biochemical, biophysical and interaction assays, we revealed fifteen putative GQs that are conserved across the different species of HAdV. We further showed that the GQs are embedded in the sequences of essential viral genes, namely E1B, E2B, and L3 genes (among others), which are involved in the early and late stages of the viral life cycle. Notably, Braco-19 (a well-known GQ binding ligand) interacted specifically with the HAdV GQs and increased their stability and further blocked the HAdV multiplication in human cells. Taken together, our data strongly supported the existence of G-quadruplex structures in the HAdV genome that affect the virus multiplication and posit that such structures may influence the efficacy of the gene-delivery vectors or even the HAdV virus life-cycle.


Assuntos
Adenovírus Humanos/genética , Quadruplex G , Regulação da Expressão Gênica , Genoma Viral , Replicação Viral/genética , Adenovírus Humanos/fisiologia , DNA Viral/genética , Estudo de Associação Genômica Ampla , Células HEK293 , Humanos , Sequências Reguladoras de Ácido Nucleico
10.
Sci Rep ; 10(1): 1477, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001794

RESUMO

The G-quadruplex (GQ) motifs are considered as potential drug-target sites for several human pathogenic viruses such as Zika, Hepatitis, Ebola, and Human Herpesviruses. The recent outbreaks of Nipah virus (NiV) in India, the highly fatal emerging zoonotic virus is a potential threat to global health security as no anti-viral drug or vaccine in currently available. Therefore, here in the present study, we sought to assess the ability of the putative G-quadruplex forming sequences in the NiV genome to form G-quadruplex structures and act as targets for anti-viral compounds. Bioinformatics analysis underpinned by various biophysical and biochemical techniques (such as NMR, CD, EMSA, DMS footprinting assay) confirmed the presence of two highly conserved G-quadruplex forming sequences (HGQs) in the G and L genes of NiV. These genes encode the cell attachment glycoprotein and RNA-dependent RNA polymerase, respectively and are essential for the virus entry and replication within the host cell. It remains possible that stabilization of these HGQs by the known G-quadruplex binding ligands like TMPyP4 and Braco-19 represents a promising strategy to inhibit the expression of the HGQ harboring genes and thereby stop the viral entry and replication inside the host cell. Accordingly, we report for the first time, that HGQs in Nipah virus genome are targets for G-quadruplex specific ligands; therefore, could serve as potential targets for anti-viral therapy.


Assuntos
Quadruplex G , Genoma Viral , Vírus Nipah/genética , Acridinas/farmacologia , Antivirais/farmacologia , Biologia Computacional , Sequência Conservada , Quadruplex G/efeitos dos fármacos , Infecções por Henipavirus/virologia , Humanos , Ligação de Hidrogênio , Índia , Ligantes , Vírus Nipah/efeitos dos fármacos , Vírus Nipah/fisiologia , Porfirinas/farmacologia , Internalização do Vírus , Replicação Viral
11.
Transbound Emerg Dis ; 67(2): 510-517, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31692237

RESUMO

During the years 2010-2018, avipoxvirus (APV) outbreaks were observed in the domestic chickens and pigeons present in the eastern Indian state of Odisha. Based on typical pox lesions, followed by molecular techniques, the overall morbidity was found to be 18%-19.23% and 16.92%-23% in chickens and pigeons, respectively. The cutaneous forms of the disease were observed with varied rates of mortality, being 47.36%-52.77% in chickens and 39.13%-92% in pigeons. PCR amplification targeting the viral P4b core protein-coding gene and the DNA polymerase gene confirmed the presence of APV strains in 10 birds. Subsequent phylogenetic analysis of these two genes confirmed that the circulating strains were members of APV clade A. The subclade analysis revealed the introduction of A1 and A3 subclades in Indian chickens and pigeons, respectively. This study is the first molecular record of APVs circulating in eastern Indian birds (Odisha) and involves the first use of the polymerase gene to reveal the circulating clades of Indian APVs.


Assuntos
Avipoxvirus/classificação , Doenças das Aves/virologia , Galinhas/virologia , Columbidae/virologia , Infecções por Poxviridae/veterinária , Animais , Avipoxvirus/genética , Doenças das Aves/epidemiologia , Índia/epidemiologia , Filogenia , Reação em Cadeia da Polimerase/veterinária , Infecções por Poxviridae/epidemiologia , Infecções por Poxviridae/virologia
12.
Langmuir ; 33(31): 7622-7632, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28696709

RESUMO

The colloidal stabilization of multiwalled carbon nanotubes (MWCNTs) in an aqueous medium through noncovalent interactions has potential benefits toward the practical use of this one-dimensional carbonaceous material for biomedical applications. Here, we report that fluorescent carbon nanodots can efficiently function as dispersing agents in the preparation of stable aqueous suspensions of CNTs at significant concentrations (0.5 mg/mL). The amphiphilic nature of carbon dots with a hydrophobic graphitic core could effectively interact with the CNT surface, whereas hydrophilic oxygenated functionalization on the C-dot surface provided excellent water dispersibility. The resultant CNT-C-dot composite showed significantly reduced cytotoxicity compared to that of unmodified or protein-coated CNTs, as demonstrated by cell viability and proliferation assays. Furthermore, the reducing capability of C-dots could be envisaged toward the formation of a catalytically active metal nanoparticle-CNT-C-dot composite without the addition of any external reducing or stabilizing agents that showed excellent catalytic activity toward the reduction of p-nitrophenol in the presence of NaBH4. Overall, the present work establishes C-dots as an efficient stabilizer for aqueous dispersions of CNTs, leading to an all-carbon nanocomposite that can be useful for different practical applications.


Assuntos
Nanotubos de Carbono , Sobrevivência Celular , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas Metálicas , Nanocompostos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...