Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Nat Prod Res ; : 1-8, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946520

RESUMO

Antimicrobial resistance is a major health burden in Pakistan, and therefore new herbal medicine-based therapeutic regimens are being largely investigated. Limbarda crithmoides essential oil was extracted by using hydrodistillation method. Chemical profiling of essential was evaluated by using FTIR and GC-MS analysis. A total of 20 components were identified including, p-xylene, o-xylene, ß-linalool, acetophenole and 3-isopropylphenyl methylcarbamate. The HOMO and LUMO analysis in DFT investigations presented that 3-isopropylphenyl methylcarbamate, p-xylene and o-xylene posess a substantial capacity to transfer charge through molecules. The antimicrobial potential of essential oil showed moderate inhibition against E. coli (MIC = 6.25 mg/mL), whereras a significant inhibition Staphylococos aureus was recorded (MIC = 3.12 mg/mL). Further, significant antioxidant activities were recorded in DPPH radical scavenging (IC50 = 80.5 µg/mL), H2O2 (64 ± 1.2%) and FRAP (60.3 µg ferrous equivalents) assays. It was therefore concluded that Limbarda crithmoides essential oil has potential antioxidant and anti-antimicrobial properties and can be used for further investigations.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124534, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38878718

RESUMO

In this study, Gordonia sp. HS126-4N was employed for dibenzothiophene (DBT) biodesulfurization, tracked over 9 days using SERS. During the initial lag phase, no significant spectral changes were observed, but after 48 h, elevated metabolic activity was evident. At 72 h, maximal bacterial population correlated with peak spectrum variance, followed by stable spectral patterns. Despite 2-hydroxybiphenyl (2-HBP) induced enzyme suppression, DBT biodesulfurization persisted. PCA and PLS-DA analysis of the SERS spectra revealed distinctive features linked to both bacteria and DBT, showcasing successful desulfurization and bacterial growth stimulation. PLS-DA achieved a specificity of 95.5 %, sensitivity of 94.3 %, and AUC of 74 %, indicating excellent classification of bacteria exposed to DBT. SERS effectively tracked DBT biodesulfurization and bacterial metabolic changes, offering insights into biodesulfurization mechanisms and bacterial development phases. This study highlights SERS' utility in biodesulfurization research, including its use in promising advancements in the field.


Assuntos
Bactéria Gordonia , Análise Espectral Raman , Tiofenos , Tiofenos/metabolismo , Tiofenos/química , Análise Espectral Raman/métodos , Bactéria Gordonia/metabolismo , Enxofre/metabolismo , Enxofre/química , Biodegradação Ambiental
3.
Mol Biol Rep ; 51(1): 771, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900353

RESUMO

OBJECTIVE: Channidae family, are major freshwater fish species amongst the local aquatic fauna of Pakistan, while, there is limited availability of local data on their molecular identification and phylogenetic analysis. METHODS: Channa species were collected from four different geographical sites in the tertiary of Punjab province on the Indus and Chenab rivers of Pakistan. Morphometric records and molecular techniques were used to determine the intraspecific variations among populations of Channa marulius. Mitochondrial DNA was extracted from the flesh of C. marulius, while, COI gene was used for molecular identification and variation levels were estimated by using Principal Component Analysis. RESULTS: Data recorded on the basis of morphometric parameters clearly divided the C. marulius of different locations into two distinct categories, which accounted for a cumulative variability of 97.6%. Non-significance (P < 0.05) among the C. marulius showed that it contains a unique control haplotype localized within the sub-population. The intra-species distance ranged from 0.000 to 0.001 for four different populations, in contrast, the sequences retrieved from the NCBI database exhibited a range span of 0.000-0.003, while, sequence diversity ranged from 0.000 to 0.006 for this intra-specific comparison. The cladogram was also constructed for C. marulius of different geographical locations for observation of phylogenetic relationship. The conclusion drawn from the phylogenetic analysis of C. marulius populations used in this study, contributes significantly to the understanding of genetic variations within populations of this species. The findings provide valuable insight to devise conservation strategies in fisheries management programs in Pakistan.


Assuntos
DNA Mitocondrial , Peixes , Filogenia , Rios , Paquistão , Animais , DNA Mitocondrial/genética , Peixes/genética , Peixes/classificação , Variação Genética/genética , Haplótipos/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética
4.
RSC Adv ; 14(28): 20290-20299, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38932985

RESUMO

Fossil fuels are considered vital natural energy resources on the Earth, and sulfur is a natural component present in them. The combustion of fossil fuels releases a large amount of sulfur in the form of SO x in the atmosphere. SO x is the major cause of environmental problems, mainly air pollution. The demand for fuels with ultra-low sulfur is growing rapidly. In this aspect, microorganisms are proven extremely effective in removing sulfur through a process known as biodesulfurization. A major part of sulfur in fossil fuels (coal and oil) is present in thiophenic structures such as dibenzothiophene (DBT) and substituted DBTs. In this study, the identification and characterization of DBT desulfurizing bacteria (Chryseobacterium sp. IS, Gordonia sp. 4N, Mycolicibacterium sp. J2, and Rhodococcus sp. J16) based on their specific biochemical constituents were conducted using surface-enhanced Raman spectroscopy (SERS). By differentiating DBT desulfurizing bacteria, researchers can gain insights into their unique characteristics, thus leading to improved biodesulfurization strategies. SERS was used to differentiate all these species based on their biochemical differences and different SERS vibrational bands, thus emerging as a potential technique. Moreover, multivariate data analysis techniques such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were employed to differentiate these DBT desulfurizing bacteria on the basis of their characteristic SERS spectral signals. For all these isolates, the accuracy, sensitivity, and specificity are above 90%, and an AUC (area under the curve) value of close to 1 was achieved for all PLS-DA models.

5.
Cureus ; 16(4): e57615, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38707031

RESUMO

Ovarian granulosa cell tumors (GCTs) are rare neoplasms with a unique incidence pattern peaking in postmenopausal women. This case report presents two instances of stage 4 recurrent adult GCTs with a prolonged 20-year follow-up. Patient 1, diagnosed at 54 years, experienced multiple recurrences managed through surgery, hormonal therapy, and chemotherapy, culminating in hepatocellular carcinoma. Patient 2, diagnosed at 67 years, underwent various treatments, including surgery, chemotherapy, and hormonal therapy, demonstrating disease stability. Despite the generally favorable prognosis, these cases highlight the challenges of managing recurrent GCTs, emphasizing the need for tailored therapeutic approaches.

6.
RSC Adv ; 14(25): 17389-17396, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38813128

RESUMO

Bacterial resistance towards antibiotics is a significant challenge for public health, and surface-enhanced Raman spectroscopy (SERS) has great potential to be a promising technique to provide detailed information about the effect of antibiotics against biofilms. SERS is employed to check the antibacterial potential of a lab synthesized drug ([bis(1,3-dipentyl-1H-imidazol-2(3H)-ylidene)silver(i)] bromide) against Bacillus subtilis and to analyze various SERS spectral features of unexposed and exposed Bacillus strains by observing biochemical changes in DNA, protein, lipid and carbohydrate contents induced by the lab synthesized imidazole derivative. Further, PCA and PLS-DA are employed to differentiate the SERS features. PCA was employed to differentiate the biochemical contents of unexposed and exposed Bacillus strains in the form of clusters of their representative SERS spectra and is also helpful in the pairwise comparison of two spectral data sets. PLS-DA provides authentic information to discriminate different unexposed and exposed Bacillus strains with 91% specificity, 93% sensitivity and 97% accuracy. SERS can be employed to characterize the complex and heterogeneous system of biofilms and to check the changes in spectral features of Bacillus strains by exposure to the lab synthesized imidazole derivative.

7.
ACS Omega ; 9(13): 15202-15209, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585125

RESUMO

In this study, surface-enhanced Raman spectroscopy (SERS) technique, along with principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA), is used as a simple, quick, and cost-effective analysis method for identifying biochemical changes occurring due to induced mutations in the Aspergillus niger fungus strain. The goal of this study is to identify the biochemical changes in the mutated fungal cells (cell mass) as compared to the control/nonmutated cells. Furthermore, multivariate data analysis tools, including PCA and PLS-DA, are used to further confirm the differentiating SERS spectral features among fungal samples. The mutations are caused in A. niger by the clustered regularly interspaced palindromic repeat CRISPR-Cas9 genomic editing method to improve their biotechnological potential for the production of cellulase enzyme. SERS was employed to detect the changes in the cells of mutated A. niger fungal strains, including one mutant producing low levels of an enzyme and another mutant producing high levels of the enzyme as a result of mutation as compared with an unmutated fungal strain as a control sample. The distinctive features of SERS corresponding to nucleic acids and proteins appear at 546, 622, 655, 738, 802, 835, 959, 1025, 1157, 1245, 1331, 1398, and 1469 cm-1. Furthermore, PLS-DA is used to confirm the 89% accuracy, 87.7% precision, 87% sensitivity, and 88.9% specificity of this method, and the value of the area under the curve (AUROC) is 0.67. It has been shown that surface-enhanced Raman spectroscopy is an effective method for identifying and differentiating biochemical changes in genome-modified fungal samples.

8.
Heliyon ; 10(7): e28926, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38576549

RESUMO

The water quality in Karachi (Pakistan) is uncertain due to the occurrence of fungi and other microorganisms. A total of twenty-five water samples were collected from public places, educational institutes, hospitals, water supply systems and surface water of the canal of Karachi (Pakistan). The different fungal species including Acremonium sp., Alternaria alternata, Aspergillus flavus, A. fumigatus, A. sulphureus, Cladosporium sp., Fusarium sp., Clonostachys (Gliocladium) sp., Macrophomina phaseolina, Mucor racemosus, Paecilomyces sp. Penicillium chrysogenum, P. citrinum, P. commune, P. expansum, Rhizoctonia sp. and Stachybotrys sp. were isolated from these drinking water samples. However, the bacteria, microalgae and some other microorganisms were present in low concentrations. The reason for fungi infection and production of mycotoxicity depends upon various factors and the availability of their nutrients in filtration plants. The major threats to human health are fungal mycotoxicity which is responsible for carcinogenic and other lethal diseases. Mostly, the genus Aspergillus was dominated and isolated with a maximum of 88-98% of occurrence in the different samples of drinking water by the direct plate-spread method. For the control of fungi, various Physico-chemical coagulation treatments were used, but Potassium alum, clay pot, and hot water treatment disinfected effectively 69-70% removal of the fungi and its spore or mycelia from the water. In addition, it is concluded that drinking water purifications such as chlorination, filtration and lime did not eliminate thermophilic fungal spores or mycelia including Penicillium, Paecilomyces and Mucor from the water.

9.
Chem Asian J ; : e202400245, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634677

RESUMO

A highly flexible, tunable morphology membrane with excellent thermal stability and ionic conductivity can endow lithium metal batteries with high power density and reduced dendrite growth. Herein, a porous Polyurethane (PU) membrane with an adjustable morphology was prepared by a simple nonsolvent-induced phase separation technique. The precise control of the final morphology of PU membranes can be achieved through appropriate selection of a nonsolvent, resulting a range of pore structures that vary from finger-like voids to sponge-like pores. The implementation of combinatorial DFT and experimental analysis has revealed that spongy PU porous membranes, especially PU-EtOH, show superior electrolyte wettability (472%), high porosity (75%), good mechanical flexibility, robust thermal dimensional stability (above 170 °C), and elevated ionic conductivity (1.38 mS cm-1) in comparison to the polypropylene (PP) separator. The use of PU-EtOH in Li//Li symmetric cell results in a prolonged lifespan of 800 h, surpasing the longevity of PU or PP cells. Moreover, when subjected to a high rate of 5 C, the LiFePO4/Li half-cell with a PU-EtOH porous membrane displayed better cycling performance (115.4 mAh g-1) compared to the PP separator (104.4 mAh g-1). Finally, the prepared PU porous membrane exhibits significant potential for improving the efficiency and safety of LMBs.

10.
Front Vet Sci ; 11: 1351693, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681848

RESUMO

Introduction: The utilization of fauna and fauna-based byproducts in ethnomedicinal usages has been a longstanding human activity, practiced across various cultures worldwide. This study focuses on investigating the utilization of animal-based traditional medicine by the people of Pakistan, specifically in the Gujranwala area. Methods: Data collection took place from January to September 2019 through interviews with local communities. Ethnomedicinal applications of animal products were analyzed using several indices, including Relative Frequency of Citation (RFC), Relative Popularity Level (RPL), Folk Use Value (FL), and Relative Occurrence Percentage (ROP). Results: The study identified the use of different body parts of 54 species of animals in treating various diseases and health issues. These include but are not limited to skin infections, sexual problems, pain management (e.g., in the backbone and joints), eyesight issues, immunity enhancement, cold, weakness, burns, smallpox, wounds, poisoning, muscular pain, arthritis, diabetes, fever, epilepsy, allergies, asthma, herpes, ear pain, paralysis, cough, swelling, cancer, bronchitis, girls' maturity, and stomach-related problems. Certain species of fauna were noted by informers with high "frequency of citation" (FC), ranging from 1 to 77. For instance, the black cobra was the most frequently cited animal for eyesight issues (FC = 77), followed by the domestic rabbit for burn treatment (FC = 67), and the Indus Valley spiny-tailed ground lizard for sexual problems (FC = 66). Passer domesticus and Gallus gallus were noted to have the highest ROP value of 99. Discussion: The findings of this study provide valuable preliminary insights for the conservation of fauna in the Gujranwala region of Punjab, Pakistan. Additionally, screening these animals for medicinally active compounds could potentially lead to the development of novel animal-based medications, contributing to both traditional medicine preservation and modern pharmaceutical advancements.

11.
Environ Sci Pollut Res Int ; 31(21): 30886-30901, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38619768

RESUMO

This study attempts to identify factors that significantly encourage the cessation of smoking in the context of Pakistan. The study distributes a modified questionnaire among 421 respondents (current as well as former smokers) in the capital city of Pakistan, Islamabad. The binary regression method was employed to data for analyzing predictors of making quit attempts and successful smoking cessation. The result indicates that respondents having strong intentions to quit, high socioeconomic status, low nicotine dependency, and past quit attempts, and those having no-smoking friends, are more likely to quit cigarette smoking successfully. On the other hand, factors like social pressure to quit smoking, religious information against smoking, intention to quit smoking, and public regulation on smoking are more likely to encourage smokers to make quit attempts. The study calls for community and school-wide smoking cessation campaigns involving officials, peers and parents, religious leaders, and other influential individuals to inform people about the dangers of smoking. In addition, religious leaders should be encouraged to issue rulings against smoking especially during "Friday Prayer." Furthermore, the government should pronounce more strict and comprehensive regulations on smoking by properly monitoring its implementation to encourage cessation of cigarette smoking.


Assuntos
Abandono do Hábito de Fumar , Fumar , Paquistão , Humanos , Fumar/epidemiologia , Masculino , Inquéritos e Questionários , Feminino , Adulto
12.
Nanomaterials (Basel) ; 14(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38668164

RESUMO

In this paper, we explore the asymmetry observed between the effects of photon-phonon coupling (nested-dressing) and a crystal field (CF) on the fine structure of fluorescence (FL) and spontaneous four-wave mixing (SFWM) in Eu3+: BiPO4 and Eu3+: NaYF4. The competition between the CF and the strong photon-phonon dressing leads to dynamic splitting in two directions. The CF leads to static splitting in one direction under weak phonon dressing. The evolution from strong dressing to weak dressing results in spectral asymmetry. This spectral asymmetry includes out-of-phase FL and in-phase SFWM. Further, the large ratio between the dressing Rabi frequency and the de-phase rate leads to strong FL and SFWM asymmetry due to photon-phonon constructive dressing. Moreover, the experimental results suggest the analogy of a spectra asymmetry router with a channel equalization ratio of 96.6%.

13.
Adv Mater ; 36(26): e2401110, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38549546

RESUMO

Manipulating the structural and kinetic dissociation processes of water at the catalyst-electrolyte interface is vital for alkaline hydrogen evolution reactions (HER) at industrial current density. This is seldom actualized due to the intricacies of the electrochemical reaction interface. Herein, this work introduces a rapid, nonequilibrium cooling technique for synthesizing ternary Turing catalysts with short-range ordered structures (denoted as FeNiRu/C). These advanced structures empower the FeNiRu/C to exhibit excellent HER performance in 1 m KOH with an ultralow overpotential of 6.5 and 166.2 mV at 10 and 1000 mA cm-2, respectively, and a specific activity 7.3 times higher than that of Pt/C. Comprehensive mechanistic analyses reveal that abundant atomic species form asymmetric atomic electric fields on the catalyst surface inducing a directed evolution and the dissociation process of interfacial H2O molecules. In addition, the locally topologized structure effectively mitigates the high hydrogen coverage of the active site induced by the high current density. The establishment of the relationship between free water population and HER activity provides a new paradigm for the design of industrially relevant high performance alkaline HER catalysts.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124126, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490122

RESUMO

Large amount of sulphur is released by the combustion of fossil fuels in the form of SoX which affects human health and leads to acid rain. To overcome this issue, it is essential to eliminate sulphur moieties from heterocyclic organo-sulphur compounds like Dibenzothiophene (DBT) present in the petrol. In this study Surface enhanced Raman scattering (SERS) spectroscopy is used to analyze the desulfurizing activity of Tsukamurella paurometabola bacterial strain. The most prominent SERS peaks observed at 791, 837, 944 and 1032 cm-1, associated to C-S stretching, are solely observed in dibenzothiophene and its metabolite-I (DBTS) but absent in 2-Hydroxybiphenyl (metabolite-II) and extraction sample of supernatant as a result of biodesulfurization. Moreover, the SERS peaks observed at 974 (characteristic peak of benzene ring) and 1015 cm-1 is associated to C-C ring breathing while 1642 and 1655 cm-1 assigned to CC bonds of aromatic ring. These peaks are only observed in 2-Hydroxybiphenyl (metabolite-II) and extraction sample of supernatant as a result of biodesulfurization. Notably, these peaks are absent in the Dibenzothiophene and its metabolite-I which indicate that aromatic ring is carrying sulfur in this fraction. Moreover, multivariate data analytical tools like principal component analysis (PCA) and PCA-loadings are applied to further differentiate between dibenzothiophene and its metabolites that are Dibenzothiophene sulphone (metabolite-I) and 2-Hydroxybiphenyl (metabolite-II).


Assuntos
Actinobacteria , Compostos de Bifenilo , Análise Espectral Raman , Enxofre , Tiofenos , Humanos , Enxofre/química , Biodegradação Ambiental
16.
RSC Adv ; 14(12): 8548-8555, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38482068

RESUMO

The ability of surface-enhanced Raman spectroscopy (SERS) to generate spectroscopic fingerprints has made it an emerging tool for biomedical applications. The objective of this study is to confirm the potential use of Raman spectroscopy for early disease diagnosis based on blood serum. In this study, a total of sixty blood serum samples, consisting of forty from diseased patients and twenty (controls) from healthy individuals, was used. Because disease biomarkers, found in the lower molecular weight fraction, are suppressed by higher molecular weight proteins, 50 kDa Amicon ultrafiltration centrifugation devices were used to produce two fractions from whole blood serum consisting of a filtrate, which is a low molecular weight fraction, and a residue, which is a high molecular weight fraction. These fractions were then analyzed, and their SERS spectral data were compared with those of healthy fractions. The SERS technique was utilized on blood serum, filtrate and residue of patients with tuberculosis to identify characteristic SERS spectral features associated with the development of disease, which can be used to differentiate them from healthy samples using silver nanoparticles as a SERS substrate. For further analysis, the effective chemometric technique of principal component analysis (PCA) was used to qualitatively differentiate all the analyzed samples based on their SERS spectral features. Partial least squares discriminant analysis (PLS-DA) accurately classified the filtrate portions of healthy and tuberculosis samples with 97% accuracy, 97% specificity, 98% sensitivity, and an area under the receiver operating characteristic (AUROC) curve of 0.74.

17.
ACS Omega ; 9(7): 7545-7553, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405541

RESUMO

Identification of adulterants in commercial samples of methyl eugenol is necessary because it is a botanical insecticide, a tephritid male attractant lure that is used to attract and kill invasive pests such as oriental fruit flies and melon flies on crops. In this study, Raman spectroscopy was used to qualitatively and quantitatively assess commercial methyl eugenol along with adulterants. For this purpose, commercial methyl eugenol was adulterated with different concentrations of xylene. The Raman spectral features of methyl eugenol and xylene in liquid formulations were examined, and Raman peaks were identified as associated with the methyl eugenol and adulterant. Principal component analysis (PCA) and partial least-squares regression analysis (PLSR) have been used to qualitatively and quantitatively analyze the Raman spectral features. PCA was applied to differentiate Raman spectral data for various concentrations of methyl eugenol and xylene. Additionally, PLSR has been used to develop a predictive model to observe a quantitative relationship between various concentrations of adulterated methyl eugenol and their Raman spectral data sets. The root-mean-square errors of calibration and prediction were calculated using this model, and the results were found to be 1.90 and 3.86, respectively. The goodness of fit of the PLSR model is found to be 0.99. The proposed approach showed excellent potential for the rapid, quantitative detection of adulterants in methyl eugenol, and it may be applied to the analysis of a range of pesticide products.

18.
RSC Adv ; 14(10): 7112-7123, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38419676

RESUMO

Escherichia coli biofilms are a major cause of gastrointestinal tract diseases, such as esophageal, stomach and intestinal diseases. Nowadays, these are the most commonly occurring diseases caused by consuming contaminated food. In this study, we evaluated the efficacy of probiotics in controlling multidrug-resistant E. coli and reducing its ability to form biofilms. Our results substantiate the effective use of probiotics as antimicrobial alternatives and to eradicate biofilms formed by multidrug-resistant E. coli. In this research, surface enhanced Raman spectroscopy (SERS) was utilized to identify and evaluate Escherichia coli biofilms and their response to the varying concentrations of the organometallic compound bis(1,3-dihexylimidazole-2-yl) silver(i) hexafluorophosphate (v). Given the escalating challenge of antibiotic resistance in bacteria that form biofilms, understanding the impact of potential antibiotic agents is crucial for the healthcare sector. The combination of SERS with principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) enabled the detection and characterization of the biofilm, providing insights into the biochemical changes induced by the antibiotic candidate. The identified SERS spectral features served as indicators for elucidating the mode of action of the potential drug on the biofilm. Through PCA and PLS-DA, metabolic variations allowing the differentiation and classification of unexposed biofilms and biofilms exposed to different concentrations of the synthesized antibiotic were successfully identified, with 95% specificity, 96% sensitivity, and a 0.75 area under the curve (AUC). This research underscores the efficiency of surface enhanced Raman spectroscopy in differentiating the impact of potential antibiotic agents on E. coli biofilms.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 124046, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364514

RESUMO

Raman spectroscopy is reliable tool for analyzing and exploring early disease diagnosis related to body fluids, such as blood serum, which contain low molecular weight fraction (LMWF) and high molecular weight fraction (HMWF) proteins. The disease biomarkers consist of LMWF which are dominated by HMWF hence their analysis is difficult. In this study, in order to overcome this issue, centrifugal filter devices of 30 kDa were used to obtain filtrate and residue portions obtained from whole blood serum samples of control and breast cancer diagnosed patients. The filtrate portions obtained in this way are expected to contain the marker proteins of breast cancer of the size below this filter size. These may include prolactin, Microphage migration inhabitation factor (MIF), γ-Synuclein, BCSG1, Leptin, MUC1, RS/DJ-1 present in the centrifuged blood serum (filtrate portions) which are then analyzed by the SERS technique to recognize the SERS spectral characteristics associated with the progression of breast cancer in the samples of different stages as compared to the healthy ones. The key intention of this study is to achieve early-stage breast cancer diagnosis through the utilization of Surface Enhanced Raman Spectroscopy (SERS) after the centrifugation of healthy and breast cancer serum samples with Amicon ultra-filter devices of 30 kDa. The silver nanoparticles with high plasmon resonance are used as a substrate for SERS analysis. Principal Component Analysis (PCA) and Partial Least Discriminant Analysis (PLS-DA) models are utilized as spectral classification tools to assess and predict rapid, reliable, and non-destructive SERS-based analysis. Notably, they were particularly effective in distinguishing between different SERS spectral groups of the cancerous and non-cancerous samples. By comparing all these spectral data sets to each other PLSDA shows the 79 % accuracy, 76 % specificity, and 81 % sensitivity in samples with AUC value of AUC = 0.774 SERS has proven to be a valuable technique for the rapid identification of the SERS spectral features of blood serum and its filtrate fractions from both healthy individuals and those with breast cancer, aiding in disease diagnosis.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Soro , Prata/química , Análise de Componente Principal
20.
RSC Adv ; 14(8): 5425-5434, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38348301

RESUMO

Drug-resistant pathogenic bacteria are a major cause of infectious diseases in the world and they have become a major threat through the reduced efficacy of developed antibiotics. This issue can be addressed by using bacteriophages, which can kill lethal bacteria and prevent them from causing infections. Surface-enhanced Raman spectroscopy (SERS) is a promising technique for studying the degradation of infectious bacteria by the interaction of bacteriophages to break the vicious cycle of drug-resistant bacteria and help to develop chemotherapy-independent remedial strategies. The phage (viruses)-sensitive Staphylococcus aureus (S. aureus) bacteria are exposed to bacteriophages (Siphoviridae family) in the time frame from 0 min (control) to 50 minutes with intervals of 5 minutes and characterized by SERS using silver nanoparticles as SERS substrate. This allows us to explore the effects of the bacteriophages against lethal bacteria (S. aureus) at different time intervals. The differentiating SERS bands are observed at 575 (C-C skeletal mode), 620 (phenylalanine), 649 (tyrosine, guanine (ring breathing)), 657 (guanine (COO deformation)), 728-735 (adenine, glycosidic ring mode), 796 (tyrosine (C-N stretching)), 957 (C-N stretching (amide lipopolysaccharides)), 1096 (PO2 (nucleic acid)), 1113 (phenylalanine), 1249 (CH2 of amide III, N-H bending and C-O stretching (amide III)), 1273 (CH2, N-H, C-N, amide III), 1331 (C-N stretching mode of adenine), 1373 (in nucleic acids (ring breathing modes of the DNA/RNA bases)) and 1454 cm-1 (CH2 deformation of saturated lipids), indicating the degradation of bacteria and replication of bacteriophages. Multivariate data analysis was performed by employing principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) to study the biochemical differences in the S. aureus bacteria infected by the bacteriophage. The SERS spectral data sets were successfully differentiated by PLS-DA with 94.47% sensitivity, 98.61% specificity, 94.44% precision, 98.88% accuracy and 81.06% area under the curve (AUC), which shows that at 50 min interval S. aureus bacteria is degraded by the replicating bacteriophages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...