Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 4866, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964177

RESUMO

Progress in sample preparation for scRNA-seq is reported based on RevGel-seq, a reversible-hydrogel technology optimized for samples of fresh cells. Complexes of one cell paired with one barcoded bead are stabilized by a chemical linker and dispersed in a hydrogel in the liquid state. Upon gelation on ice the complexes are immobilized and physically separated without requiring nanowells or droplets. Cell lysis is triggered by detergent diffusion, and RNA molecules are captured on the adjacent barcoded beads for further processing with reverse transcription and preparation for cDNA sequencing. As a proof of concept, analysis of PBMC using RevGel-seq achieves results similar to microfluidic-based technologies when using the same original sample and the same data analysis software. In addition, a clinically relevant application of RevGel-seq is presented for pancreatic islet cells. Furthermore, characterizations carried out on cardiomyocytes demonstrate that the hydrogel technology readily accommodates very large cells. Standard analyses are in the 10,000-input cell range with the current gelation device, in order to satisfy common requirements for single-cell research. A convenient stopping point after two hours has been established by freezing at the cell lysis step, with full preservation of gene expression profiles. Overall, our results show that RevGel-seq represents an accessible and efficient instrument-free alternative, enabling flexibility in terms of experimental design and timing of sample processing, while providing broad coverage of cell types.


Assuntos
Análise de Sequência de RNA , Análise de Célula Única , Análise de Sequência de RNA/métodos , Hidrogéis/química , Análise de Célula Única/métodos , Humanos , Animais , Camundongos , Perfilação da Expressão Gênica
3.
RNA ; 25(8): 897-904, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31043511

RESUMO

The number of annotated long noncoding RNAs (lncRNAs) continues to grow; however, their functional characterization in model organisms has been hampered by the lack of reliable genetic inactivation strategies. While partial or full deletions of lncRNA loci disrupt lncRNA expression, they do not permit the formal association of a phenotype with the encoded transcript. Here, we examined several alternative strategies for generating lncRNA null alleles in zebrafish and found that they often resulted in unpredicted changes to lncRNA expression. Removal of the transcription start sites (TSSs) of lncRNA genes resulted in hypomorphic mutants, due to the usage of either constitutive or tissue-specific alternative TSSs. Deletions of short, highly conserved lncRNA regions can also lead to overexpression of truncated transcripts. In contrast, knock-in of a polyadenylation signal enabled complete inactivation of malat1, the most abundant vertebrate lncRNA. In summary, lncRNA null alleles require extensive in vivo validation, and we propose insertion of transcription termination sequences as the most reliable approach to generate lncRNA-deficient zebrafish.


Assuntos
Inativação Gênica , RNA Longo não Codificante/genética , Peixe-Zebra/genética , Animais , Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Especificidade de Órgãos , Deleção de Sequência , Sítio de Iniciação de Transcrição
4.
Elife ; 72018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30132756

RESUMO

Hematopoiesis leads to the formation of blood and immune cells. Hematopoietic stem cells emerge during development, from vascular components, via a process called the endothelial-to-hematopoietic transition (EHT). Here, we reveal essential biomechanical features of the EHT, using the zebrafish embryo imaged at unprecedented spatio-temporal resolution and an algorithm to unwrap the aorta into 2D-cartography. We show that the transition involves anisotropic contraction along the antero-posterior axis, with heterogenous organization of contractile circumferential actomyosin. The biomechanics of the contraction is oscillatory, with unusually long periods in comparison to other apical constriction mechanisms described so far in morphogenesis, and is supported by the anisotropic reinforcement of junctional contacts. Finally, we show that abrogation of blood flow impairs the actin cytoskeleton, the morphodynamics of EHT cells, and the orientation of the emergence. Overall, our results underline the peculiarities of the EHT biomechanics and the influence of the mechanical forces exerted by blood flow.


Assuntos
Actomiosina/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Peixe-Zebra/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Anisotropia , Fenômenos Biomecânicos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/citologia , Hemodinâmica , Junções Intercelulares/metabolismo , Modelos Biológicos , Mutação/genética , Cadeias Leves de Miosina/metabolismo , Fenótipo , Fosforilação , Fatores de Tempo
5.
Genome Res ; 27(2): 259-268, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27965291

RESUMO

Super-enhancers (SEs) are key transcriptional drivers of cellular, developmental, and disease states in mammals, yet the conservational and regulatory features of these enhancer elements in nonmammalian vertebrates are unknown. To define SEs in zebrafish and enable sequence and functional comparisons to mouse and human SEs, we used genome-wide histone H3 lysine 27 acetylation (H3K27ac) occupancy as a primary SE delineator. Our study determined the set of SEs in pluripotent state cells and adult zebrafish tissues and revealed both similarities and differences between zebrafish and mammalian SEs. Although the total number of SEs was proportional to the genome size, the genomic distribution of zebrafish SEs differed from that of the mammalian SEs. Despite the evolutionary distance separating zebrafish and mammals and the low overall SE sequence conservation, ∼42% of zebrafish SEs were located in close proximity to orthologs that also were associated with SEs in mouse and human. Compared to their nonassociated counterparts, higher sequence conservation was revealed for those SEs that have maintained orthologous gene associations. Functional dissection of two of these SEs identified conserved sequence elements and tissue-specific expression patterns, while chromatin accessibility analyses predicted transcription factors governing the function of pluripotent state zebrafish SEs. Our zebrafish annotations and comparative studies show the extent of SE usage and their conservation across vertebrates, permitting future gene regulatory studies in several tissues.


Assuntos
Cromatina/genética , Sequência Conservada/genética , Elementos Facilitadores Genéticos , Peixe-Zebra/genética , Acetilação , Animais , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Genômica , Histonas/genética , Humanos , Camundongos , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...