Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 705: 135785, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31839296

RESUMO

The frequency of Atlantic hurricanes has been predicted to increase significantly by the end of this century. Watershed disturbance initiated by hurricanes can alter dissolved organic matter (DOM) quantity and quality in source water dramatically. DOM is an important disinfection by-product (DBP) precursor, and thus hurricanes can have a significant impact on water treatability and drinking water safety. The interactions between land use and land cover (LULC) of a watershed and DBP formation potential (FP) in source water under hurricane events have rarely been evaluated. Here, we quantified the FPs of two carbonaceous (trihalomethanes [THMs] and haloacetic acids [HAA]) and two nitrogenous (haloacetonitrile [HAN] and N-nitrosodimethylamine [NDMA]) DBPs at eighteen sub-watersheds with varying LULC along the Yadkin-Pee Dee River basin across North and South Carolina during and after the flooding condition caused by the 2016 Hurricane Matthew. Using chlorine as a disinfectant, THM FP was 238% (±117%) higher (p < .001) under the flooding condition than baseflow condition, while HAA FP did not change significantly as a result of the flooding. DOM composition under the flooding condition changed in favor of the formation of THMs rather than HAAs by a decrease of fulvic acid-like compounds and an increase in DOM aromaticity (SUVA). The FPs of studied DBPs under the flooding condition compared with the baseflow, followed the order of HAN (356.5%) > NDMA (246.4%) > THM (115.2%) using chloramine as a disinfectant. Higher HAN FP and NDMA FP compared to THM FP suggested that more nitrogenous than carbonaceous DBPs precursors were released during this hurricane event. LULC analysis revealed that forested wetlands were the major contributor of THM, HAA, and HAN precursors, whereas NDMA precursor was derived from developed areas. This unique study highlights the dynamic interplay between LULC and exports of carbonaceous and nitrogenous DBPs precursors during and after hurricanes.

2.
Sci Total Environ ; 689: 232-244, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271989

RESUMO

Extreme weather events, such as hurricanes, can cause ecological disturbances that alter energy and nutrients across terrestrial-aquatic boundaries. Yet, relatively few studies have considered the impacts of extreme weather events on biogeochemical dynamics in watersheds at larger spatial scales. Here, we assessed the effects of Hurricanes Harvey and Irma on the export of dissolved organic matter (DOM) and nutrients in ten watersheds from five southeastern states of the United States. We quantified the magnitude of dissolved organic carbon (DOC) and nutrients exported during the storms and assessed the changes in DOM sources and bioreactivity after storms. Our results show that the storm-mobilized DOC and nutrients fluxes were primarily driven by water discharge. The proportions of terrestrial, humic-like DOM compounds increased, and percent autochthonous, protein-like DOM decreased during high flows. Percent bioreactive DOC decreased with increasing discharge. Bioreactivity increased with increasing nitrate concentration, but decreased as percent terrestrial humic-like DOM, aromaticity, and molecular weight increased. These observations suggest that storms may have shifted flow paths to shallower depths that promoted the addition of biorefractory organic matter from topsoils into the water column. Notably, the total flux of bioreactive DOC was at least nearly twice as high at peak discharge, indicating materials transported by large storm flows could strongly enhance microbial activity in streams, although the position of storm-mediated microbial hotspots would depend on the flow rate and other instream parameters. Additionally, compared to forest-dominated watersheds, urban watersheds exported high loads of nutrients and bioreactive DOC, and a wetland-dominated watershed had a prolonged, but relatively subdued export of DOC and nutrients. Together, our findings highlight the ecological significance of extreme weather and climate events in leading to rapid, large-magnitude changes in energy and nutrient availability within drainage networks, and the potential interactions between land use and climate change on watershed biogeochemistry.

3.
Environ Pollut ; 226: 317-323, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28392240

RESUMO

Urbanization results in the rapid expansion of impervious surfaces, therefore a better understanding of biogeochemical consequences of soil sealing is crucial. Previous research documents a significant reduction in soil carbon and nitrogen content, however, it is unclear if this decrease is a result of top soil removal or long-term soil sealing. In this study, soil biogeochemical properties were quantified beneath homes built on a crawl space at two depths (0-10 cm, and 10-20 cm). All homes, 11-114 years in age, were sampled in the Piedmont region of Alabama and Georgia, USA. This age range enabled the use of a chronosequence approach to estimate carbon loss or gain under the sampled homes. The difference in soil carbon content beneath homes and adjoining urban lawns showed a quadratic relation with age. Maximum C loss occurred at approximately fifty years. The same pattern was observed for MBC: C ratio suggesting that the soil carbon content was decreasing beneath the homes for first fifty years, then increased afterward. The average soil C and N content in the top 10 cm were respectively 61.86% (±4.42%), and 65.77% (±5.65%) lower underneath the homes in comparison to urban lawns. Microbial biomass carbon (MBC), and nitrogen (MBN) were significantly lower below the homes compared to the urban lawns, while bulk density and phosphorus content were higher beneath the homes.


Assuntos
Sequestro de Carbono , Microbiologia do Solo , Solo/química , Alabama , Biomassa , Carbono/análise , Ecossistema , Nitrogênio/análise , Fósforo , Urbanização/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA