Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(41): 61938-61953, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35066847

RESUMO

Titanium dioxide (TiO2) photocatalyst has gained constant interest in the treatment of wastewater because of its greater stability, lower cost, low-toxicity, high efficiency, and more reactivity under UV radiation. On the other hand, Graphene oxide (GO) possesses high electron mobility, and therefore when GO is combined with TiO2, the photocatalytic activity of TiO2 is increased. In this study, nano-composite was synthesized in a hydrothermal reactor using two types of TiO2 nanoparticles (TiO2 consisting of a mixture of rutile and anatase phase (Type 1) and bioreduced TiO2 (Type 2)) and the efficiency of both the TiO2-GO nanocomposite to remove the drug Carbamazepine (CBZ) was investigated. The TiO2-GO nanocomposite with the Type 1 TiO2 exhibited greater efficiency hence further studies were conducted with that composite. The efficiency of TiO2-GO nanocomposite for the purpose of removing CBZ were investigated in presence of different types of incident radiation like Solar radiation, white light and three type of Ultraviolet radiation (A, B, C). The removal of the drug by TiO2-GO composite has been optimized using response surface methodology and artificial neural network. From this study, the maximum reduction was observed was 91.2% and whereas in case of the RSM optimization study the maximum removal that was observed was 91.7%. The validation of the RSM model was done using the mathematical analysis of the model equation of RSM. Different kinetics models was also analyzed using the experimental data and it was observed that it followed pseudo-second-order kinetics. The optimization using ANN also showed a close interaction with the experimental results.


Assuntos
Grafite , Nanocompostos , Poluentes Químicos da Água , Carbamazepina , Catálise , Redes Neurais de Computação , Óxidos , Preparações Farmacêuticas , Titânio , Raios Ultravioleta
2.
ACS Omega ; 5(50): 32305-32317, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33376867

RESUMO

In the present study, a combined approach of ozone-based advanced oxidation and adsorption by activated char was employed for the treatment of a pharmaceutical industrial effluent. Ozone is a selective oxidant, but the addition of H2O2 generated in situ hydroxyl radicals, which is a non-selective stronger oxidant than ozone. The effluent obtained from the pharmaceutical industry mainly contained anti-cancer drugs, anti-psychotic drugs, and some pain killers. The peroxone process had 75-88.5% chemical oxygen demand (COD) reduction efficiency at pH 5-11 in 3 h. Adsorption by activated char further reduced the COD to 85.4-92.7% for pH 5-11 in 2.5 h. All other water quality parameters were significantly decreased (>73% removal) during ozonation. The primary operational parameters (system pH and H2O2 concentration) were also varied, and their effects were analyzed. The pseudo-first-order rate constants for ozonation were calculated, and they were found to be in the range of 1.42 × 10-4 to 3.35 × 10-4 s-1 for pH 5-11. The kinetic parameters for adsorption were calculated for the pseudo-first-order, pseudo-second-order, and Elovich models. The fit of the pseudo-first-order kinetic model to the experimental data was the best.

3.
Environ Technol ; 36(1-4): 336-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25514135

RESUMO

Oxidation of Brilliant Green dye was performed using ozone microbubbles in a pilot plant scale. Decolourisation was very effective at both acidic and alkaline pH. The colour of the aqueous solution was below detectable limit after 30 min at 1.7 mg/s ozone generation rate. The reaction between the dye and ozone was first-order in nature with respect to both ozone and the dye. The enhancement factor increased with increasing dye concentration. The samples were analysed by the ultra-violet-visible (UV-Vis) spectrophotometry, gas chromatography-mass spectrometry (GC-MS) and Fourier transform infra-red (FTIR) spectroscopy. From the GC-MS analysis, 13 intermediates were detected as oxidation products of this dye at various stages of oxidation. The changes in the FTIR spectra showed the destruction of the dye and the formation of new compounds. The oxidation mechanism was divided into two reaction pathways. The mineralisation of Brilliant Green was up to 80% in 60 min, as determined by total organic carbon analysis.


Assuntos
Ozônio/química , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/isolamento & purificação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Microbolhas , Projetos Piloto , Purificação da Água/métodos
4.
Chemosphere ; 97: 120-4, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24268174

RESUMO

The use of ozone in the treatment of water and wastewater is rapidly increasing due to its high oxidizing power. Arsenic is one the most toxic elements found in water. As(III) and As(V) are the major sources of arsenic poisoning. It is known that As(V) can be more easily removed from water by adsorptive methods than As(III). In this work, oxidation of more toxic As(III) to less toxic As(V) was studied in a pilot-plant by using ozone microbubbles. The microbubbles were effective in dissolving ozone in water. The oxidation was fast over a wide range of pH (e.g., 4-9). The role of hydroxyl radical in the oxidation of As(III) under acidic conditions was investigated by using 2-propanol as the hydroxyl radical scavenger. Under acidic conditions, the addition of 2-propanol slowed down the oxidation, which proves that hydroxyl radicals were involved in the oxidation process. The effect of carbonate ions on the rate of oxidation was investigated. It was found that the generation of carbonate ion radical from the carbonate ion accelerated the oxidation of As(III). The kinetics of oxidation of As(III) by ozone was studied.


Assuntos
Arsênio/análise , Modelos Químicos , Ozônio/química , 2-Propanol/química , Radical Hidroxila/química , Cinética , Microbolhas , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA