Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Rep (Hoboken) ; 2(5): e1207, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-32721124

RESUMO

BACKGROUND: Haematological malignancies harbouring rearrangements of the KMT2A gene represent a unique subtype of leukaemia, with biphenotypic clinical manifestations, a rapid and aggressive onset, and a generally poor prognosis. Chromosomal translocations involving KMT2A often cause the formation of oncogenic fusion genes, such as the most common translocation t(4;11)(q21;q23) producing the KMT2A-AFF1 chimera. AIM: The aim of this study was to confirm and review the cytogenetic and molecular features of the KMT2A-rearranged RS4;11 cell line and put those in context with other reports of cell lines also harbouring a t(4;11) rearrangement. METHODS AND RESULTS: The main chromosomal rearrangements t(4;11)(q21;q23) and i(7q), described when the cell line was first established, were confirmed by fluorescence in situ hybridisation (FISH) and 24-colour karyotyping by M-FISH. Additional cytogenetic abnormalities were investigated by further FISH experiments, including the presence of trisomy 18 as a clonal abnormality and the discovery of one chromosome 8 being an i(8q), which indicates a duplication of the oncogene MYC. A homozygous deletion of 9p21 containing the tumour-suppressor genes CDKN2A and CDKN2B was also revealed by FISH. The production of the fusion transcript KMT2A-AFF1 arising from the der(11)t(4;11) was confirmed by RT-PCR, but sequencing of the amplified fragment revealed the presence of multiple isoforms. Two transcript variants, resulting from alternative splicing, were identified differing in one glutamine residue in the translated protein. CONCLUSION: As karyotype evolution is a common issue in cell lines, we highlight the need to monitor cell lines in order to re-confirm their characteristics over time. We also reviewed the literature to provide a comparison of key features of several cell lines harbouring a t(4;11). This would guide scientists in selecting the most suitable research model for this particular type of KMT2A-leukaemia.


Assuntos
Proteínas de Ligação a DNA/genética , Histona-Lisina N-Metiltransferase/genética , Leucemia/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Fatores de Elongação da Transcrição/genética , Linhagem Celular Tumoral , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 4/genética , Humanos , Cariotipagem , Leucemia/patologia , Deleção de Sequência , Translocação Genética
2.
Front Immunol ; 9: 533, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867915

RESUMO

Mycobacterium tuberculosis can proficiently enter macrophages and diminish complement activation on its cell surface. Within macrophages, the mycobacterium can suppress macrophage apoptosis and survive within the intracellular environment. Previously, we have shown that complement regulatory proteins such as factor H may interfere with pathogen-macrophage interactions during tuberculosis infection. In this study, we show that Mycobacterium bovis BCG binds properdin, an upregulator of the complement alternative pathway. TSR4+5, a recombinant form of thrombospondin repeats 4 and 5 of human properdin expressed in tandem, which is an inhibitor of the alternative pathway, was also able to bind to M. bovis BCG. Properdin and TSR4+5 were found to inhibit uptake of M. bovis BCG by THP-1 macrophage cells in a dose-dependent manner. Quantitative real-time PCR revealed elevated pro-inflammatory responses (TNF-α, IL-1ß, and IL-6) in the presence of properdin or TSR4+5, which gradually decreased over 6 h. Correspondingly, anti-inflammatory responses (IL-10 and TGF-ß) showed suppressed levels of expression in the presence of properdin, which gradually increased over 6 h. Multiplex cytokine array analysis also revealed that properdin and TSR4+5 significantly enhanced the pro-inflammatory response (TNF-α, IL-1ß, and IL-1α) at 24 h, which declined at 48 h, whereas the anti-inflammatory response (IL-10) was suppressed. Our results suggest that properdin may interfere with mycobacterial entry into macrophages via TSR4 and TSR5, particularly during the initial stages of infection, thus affecting the extracellular survival of the pathogen. This study offers novel insights into the non-complement related functions of properdin during host-pathogen interactions in tuberculosis.


Assuntos
Macrófagos/fisiologia , Mycobacterium bovis/fisiologia , Properdina/fisiologia , Trombospondinas/fisiologia , Citocinas/genética , Humanos , Células THP-1
3.
PLoS One ; 12(9): e0185126, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28961258

RESUMO

P53 protein is more frequently mutated in human tumours compared with the other proteins. While the majority of the p53 mutations, especially within its DNA-binding domain, lead to the loss of the wild-type function, there are accumulating data demonstrating that the p53 mutants gain tumour promoting activities; the latter triggers a revitalised interest in functional analysis of the p53 mutants. A systematic screening for p53 mutations in surgical materials from patients with glioma revealed a 378C>G mutation that creates a stop codon at the position of amino acid residue 126. The mutation eliminates the recognition site for the restriction endonuclease Sca I that allowed us to carry out RFLP analysis of DNA extracted from the clinical samples and suggests that this mutation is more frequent than is documented in the p53 databases. Both the ECV-304 and EJ cell lines, that probably originate from the bladder carcinoma T24 cell line, were confirmed to contain the homozygous 378C>G mutation but were shown to produce the p53 protein of expected full-length size detected by Western blotting. We provide evidence that the 378C>G mutation generates an alternative 3' splice site (ss) which is more often used instead of the authentic upstream 3' ss, driving the production of mRNA encoding the protein with the single amino acid deletion (p53ΔY126). Using endogenous expression, we demonstrated that the p53ΔY126 protein is nearly as active as the wild type protein in inducing the p21/Waf1 expression and apoptosis.


Assuntos
Processamento Alternativo , Apoptose , Códon sem Sentido , Proteína Supressora de Tumor p53/genética , Western Blotting , Linhagem Celular Tumoral , DNA Complementar/genética , Citometria de Fluxo , Humanos , Polimorfismo de Fragmento de Restrição
4.
PLoS One ; 10(5): e0128430, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26020933

RESUMO

Primary gene transcripts of eukaryotes contain introns, which are removed during processing by splicing machinery. Biochemical studies In vitro have identified a specific pathway in which introns are recognised and spliced out. This occurs by progressive formation of spliceosomal complexes designated as E, A, B, and C. The composition and structure of these spliceosomal conformations have been characterised in many detail. In contrast, transitions between the complexes and the intermediates of these reactions are currently less clear. We have previously isolated a novel 35S U5 snRNP from HeLa nuclear extracts. The protein composition of this particle differed from the canonical 20S U5 snRNPs but was remarkably similar to the activated B* spliceosomes. Based on this observation we have proposed a hypothesis that 35S U5 snRNPs represent a dissociation product of the spliceosome after both transesterification reactions are completed. Here we provide experimental evidence that 35S U5 snRNPs are generated from the activated B* spliceosomes during In vitro splicing.


Assuntos
Splicing de RNA , RNA Mensageiro/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Spliceossomos/genética , Éxons , Células HeLa , Humanos , Íntrons , Ligação Proteica , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U5/química , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Spliceossomos/química , Spliceossomos/metabolismo
5.
Cell Commun Signal ; 11: 88, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24245560

RESUMO

BACKGROUND: Exosomes are nano-sized vesicles of endocytic origin that are involved in cell-to-cell communication including shuttle RNA, mainly mRNA and microRNA. As exosomes naturally carry RNA between cells, these particles might be useful in gene cancer therapy to deliver therapeutic short interfering RNA (siRNA) to the target cells. Despite the promise of RNA interference (RNAi) for use in therapy, several technical obstacles must be overcome. Exogenous siRNA is prone to degradation, has a limited ability to cross cell membranes and may induce an immune response. Naturally occurring RNA carriers, such as exosomes, might provide an untapped source of effective delivery strategies. RESULTS: This study demonstrates that exosomes can deliver siRNA to recipient cells in vitro. The different strategies were used to introduce siRNAs into human exosomes of various origins. The delivery of fluorescently labeled siRNA via exosomes to cells was confirmed using confocal microscopy and flow cytometry. Two different siRNAs against RAD51 and RAD52 were used to transfect into the exosomes for therapeutic delivery into target cells. The exosome-delivered siRNAs were effective at causing post-transcriptional gene silencing in recipient cells. Moreover, the exosome-delivered siRNA against RAD51 was functional and caused the massive reproductive cell death of recipient cancer cells. CONCLUSIONS: The results strongly suggest that exosomes effectively delivered the siRNA into the target cells. The therapeutic potential of exosome-mediated siRNA delivery was demonstrated in vitro by the strong knockdown of RAD51, a prospective therapeutic target for cancer cells. The results give an additional evidence of the ability to use human exosomes as vectors in cancer therapy, including RNAi-based gene therapy.


Assuntos
Exossomos , Técnicas de Transferência de Genes , RNA Interferente Pequeno/administração & dosagem , Líquido Ascítico/citologia , Linhagem Celular Tumoral , Humanos , Rad51 Recombinase/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética
6.
Nat Commun ; 3: 994, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22871813

RESUMO

There is little quantitative information regarding how much splicing occurs co-transcriptionally in higher eukaryotes, and it remains unclear where precisely splicing occurs in the nucleus. Here we determine the global extent of co- and post-transcriptional splicing in mammalian cells, and their respective subnuclear locations, using antibodies that specifically recognize phosphorylated SF3b155 (P-SF3b155) found only in catalytically activated/active spliceosomes. Quantification of chromatin- and nucleoplasm-associated P-SF3b155 after fractionation of HeLa cell nuclei, reveals that ~80% of pre-mRNA splicing occurs co-transcriptionally. Active spliceosomes localize in situ to regions of decompacted chromatin, at the periphery of or within nuclear speckles. Immunofluorescence microscopy with anti-P-SF3b155 antibodies, coupled with transcription inhibition and a block in splicing after SF3b155 phosphorylation, indicates that post-transcriptional splicing occurs in nuclear speckles and that release of post-transcriptionally spliced mRNA from speckles is coupled to the nuclear mRNA export pathway. Our data provide new insights into when and where splicing occurs in cells.


Assuntos
Núcleo Celular/metabolismo , Splicing de RNA/fisiologia , Spliceossomos/metabolismo , Núcleo Celular/genética , Células HeLa , Humanos , Microscopia de Fluorescência , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação/genética , Fosforilação/fisiologia , Splicing de RNA/genética , Fatores de Processamento de RNA , Ribonucleoproteína Nuclear Pequena U2/genética , Ribonucleoproteína Nuclear Pequena U2/metabolismo
7.
Nucleic Acids Res ; 40(6): 2639-52, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22110043

RESUMO

Spliceosomes remove introns from primary gene transcripts. They assemble de novo on each intron through a series of steps that involve the incorporation of five snRNP particles and multiple non-snRNP proteins. In mammals, all the intermediate complexes have been characterized on one transcript (MINX), with the exception of the very first, complex E. We have purified this complex by two independent procedures using antibodies to either U1-A or PRPF40A proteins, which are known to associate at an early stage of assembly. We demonstrate that the purified complexes are functional in splicing using commitment assays. These complexes contain components expected to be in the E complex and a number of previously unrecognized factors, including survival of motor neurons (SMN) and proteins of the SMN-associated complex. Depletion of the SMN complex proteins from nuclear extracts inhibits formation of the E complex and causes non-productive complexes to accumulate. This suggests that the SMN complex stabilizes the association of U1 and U2 snRNPs with pre-mRNA. In addition, the antibody to PRPF40A precipitated U2 snRNPs from nuclear extracts, indicating that PRPF40A associates with U2 snRNPs.


Assuntos
Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Proteínas do Complexo SMN/metabolismo , Spliceossomos/metabolismo , Proteínas de Transporte/metabolismo , Células HeLa , Humanos , Splicing de RNA
8.
Nucleus ; 2(6): 517-22, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22064469

RESUMO

Hutchinson-Gilford Progeria Syndrome (HGPS) is a severe premature aging syndrome that affects children. These children display characteristics associated with normal aging and die young usually from cardiovascular problems or stroke. Classical HGPS is caused by mutations in the gene encoding the nuclear structural protein lamin A. This mutation leads to a novel version of lamin A that retains a farnesyl group from its processing. This protein is called Progerin and is toxic to cellular function. Pre-lamin A is an immature version of lamin A and also has a farnesylation modification, which is cleaved in the maturation process to create lamin A.


Assuntos
Pesquisa Biomédica , Mutação , Proteínas Nucleares/metabolismo , Progéria/metabolismo , Precursores de Proteínas/metabolismo , Universidades , Inglaterra , Humanos , Lamina Tipo A , Proteínas Nucleares/genética , Progéria/genética , Precursores de Proteínas/genética
9.
J Med Genet ; 47(3): 176-81, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19797196

RESUMO

BACKGROUND: Radiotherapy-induced DNA double-strand breaks (DSBs) are critical cytotoxic lesions. Inherited defects in DNA DSB repair pathways lead to hypersensitivity to ionising radiation, immunodeficiency and increased cancer incidence. A patient with xeroderma pigmentosum complementation group C, with a scalp angiosarcoma, exhibited dramatic clinical radiosensitivity following radiotherapy, resulting in death. A fibroblast cell line from non-affected skin (XP14BRneo17) was hypersensitive to ionising radiation and defective in DNA DSB repair. AIM: To determine the genetic defect causing cellular radiation hypersensitivity in XP14BRneo17 cells. METHODS: Functional genetic complementation whereby copies of human chromosomes containing genes involved in DNA DSB repair (chromosomes 2, 5, 8 10, 13 and 22) were individually transferred to XP14BRneo17 cells in an attempt to correct the radiation hypersensitivity. Clonogenic survival assays and gamma-H2AX immunofluorescence were conducted to measure radiation sensitivity and repair of DNA DSBs. DNA sequencing of defective DNA repair genes was performed. RESULTS: Transfer of chromosome 8 (location of DNA-PKcs gene) and transfection of a mammalian expression construct containing the DNA-PKcs cDNA restored normal ionising radiation sensitivity and repair of DNA DSBs in XP14BRneo17 cells. DNA sequencing of the DNA-PKcs coding region revealed a 249-bp deletion (between base pairs 3656 and 3904) encompassing exon 31 of the gene. CONCLUSION: We provide evidence of a novel splice variant of the DNA-PKcs gene associated with radiosensitivity in a patient with xeroderma pigmentosum and report the first double mutant in distinct DNA repair pathways being consistent with viability.


Assuntos
Proteína Quinase Ativada por DNA/fisiologia , Neoplasias de Cabeça e Pescoço/radioterapia , Hemangiossarcoma/radioterapia , Proteínas Nucleares/fisiologia , Tolerância a Radiação/genética , Neoplasias Cutâneas/radioterapia , Xeroderma Pigmentoso/genética , Processamento Alternativo/fisiologia , Sequência de Aminoácidos , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Proteína Quinase Ativada por DNA/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Hemangiossarcoma/genética , Hemangiossarcoma/patologia , Humanos , Isoenzimas/genética , Isoenzimas/fisiologia , Dados de Sequência Molecular , Proteínas Nucleares/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Lesões por Radiação/genética , Couro Cabeludo , Homologia de Sequência de Aminoácidos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Xeroderma Pigmentoso/patologia
10.
PLoS One ; 4(9): e7202, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19784376

RESUMO

Most human protein-encoding genes contain multiple exons that are spliced together, frequently in alternative arrangements, by the spliceosome. It is established that U1 snRNP is an essential component of the spliceosome, in human consisting of RNA and ten proteins, several of which are post-translationally modified and exist as multiple isoforms. Unresolved and challenging to investigate are the effects of these post translational modifications on the dynamics, interactions and stability of the particle. Using mass spectrometry we investigate the composition and dynamics of the native human U1 snRNP and compare native and recombinant complexes to isolate the effects of various subunits and isoforms on the overall stability. Our data reveal differential incorporation of four protein isoforms and dynamic interactions of subunits U1-A, U1-C and Sm-B/B'. Results also show that unstructured post-translationally modified C-terminal tails are responsible for the dynamics of Sm-B/B' and U1-C and that their interactions with the Sm core are controlled by binding to different U1-70k isoforms and their phosphorylation status in vivo. These results therefore provide the important functional link between proteomics and structure as well as insight into the dynamic quaternary structure of the native U1 snRNP important for its function.


Assuntos
RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U1/química , Spliceossomos/metabolismo , Catálise , Células HeLa , Humanos , Espectrometria de Massas/métodos , Conformação Molecular , Isoformas de Proteínas , Processamento de Proteína Pós-Traducional , Estrutura Quaternária de Proteína , Proteômica/métodos , RNA/metabolismo , Proteínas Recombinantes/química , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos
11.
Mol Cell ; 24(2): 267-78, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-17052460

RESUMO

In eukaryotes, pre-mRNA exons are interrupted by large noncoding introns. Alternative selection of exons and nucleotide-exact removal of introns are performed by the spliceosome, a highly dynamic macromolecular machine. U4/U6.U5 tri-snRNP is the largest and most conserved building block of the spliceosome. By 3D electron cryomicroscopy and labeling, the exon-aligning U5 snRNA loop I is localized at the center of the tetrahedrally shaped tri-snRNP reconstructed to approximately 2.1 nm resolution in vitrified ice. Independent 3D reconstructions of its subunits, U4/U6 and U5 snRNPs, show how U4/U6 and U5 combine to form tri-snRNP and, together with labeling experiments, indicate a close proximity of the spliceosomal core components U5 snRNA loop I and U4/U6 at the center of tri-snRNP. We suggest that this central tri-snRNP region may be the site to which the prespliceosomal U2 snRNA has to approach closely during formation of the catalytic core of the spliceosome.


Assuntos
Microscopia Crioeletrônica/métodos , RNA Nuclear Pequeno/química , Spliceossomos/ultraestrutura , Sequência de Bases , Domínio Catalítico , Éxons , Células HeLa , Humanos , Imageamento Tridimensional , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , Spliceossomos/química
12.
EMBO J ; 23(12): 2381-91, 2004 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-15175653

RESUMO

During catalytic activation of the spliceosome, snRNP remodeling events occur, leading to the formation of a 35S U5 snRNP that contains a large group of proteins, including Prp19 and CDC5, not found in 20S U5 snRNPs. To investigate the function of 35S U5 proteins, we immunoaffinity purified human spliceosomes that had not yet undergone catalytic activation (designated BDeltaU1), which contained U2, U4, U5, and U6, but lacked U1 snRNA. Comparison of the protein compositions of BDeltaU1 and activated B* spliceosomes revealed that, whereas U4/U6 snRNP proteins are stably associated with BDeltaU1 spliceosomes, 35S U5-associated proteins (which are present in B*) are largely absent, suggesting that they are dispensable for complex B formation. Indeed, immunodepletion/complementation experiments demonstrated that a subset of 35S U5 proteins including Prp19, which form a stable heteromeric complex, are required prior to catalytic step 1 of splicing, but not for stable integration of U4/U6.U5 tri-snRNPs. Thus, comparison of the proteomes of spliceosomal complexes at defined stages can provide information as to which proteins function as a group at a particular step of splicing.


Assuntos
Proteínas de Transporte/fisiologia , Splicing de RNA/fisiologia , Catálise , Enzimas Reparadoras do DNA , Células HeLa , Humanos , Proteínas Nucleares , Fatores de Processamento de RNA
13.
Nat Struct Mol Biol ; 11(5): 463-8, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15098019

RESUMO

Major structural changes occur in the spliceosome during its transition from the fully assembled complex B to the catalytically activated spliceosome. To understand the rearrangement, it is necessary to know the detailed three-dimensional structures of these complexes. Here, we have immunoaffinity-purified human spliceosomes (designated B Delta U1) at a stage after U4/U6.U5 tri-snRNP integration but before activation, and have determined the three-dimensional structure of B Delta U1 by single-particle electron cryomicroscopy at a resolution of approximately 40 A. The overall size of the complex is about 370 x 270 x 170 A. The three-dimensional structure features a roughly triangular body linked to a head domain in variable orientations. The body is very similar in size and shape to the isolated U4/U6.U5 tri-snRNP. This provides initial insight into the structural organization of complex B.


Assuntos
Proteínas/química , Spliceossomos/química , Catálise , Humanos , Microscopia Eletrônica , Conformação Proteica , Proteínas/ultraestrutura , Spliceossomos/ultraestrutura
14.
Science ; 298(5601): 2205-8, 2002 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-12411573

RESUMO

Major structural changes occur in the spliceosome during its activation just before catalyzing the splicing of pre-messenger RNAs (pre-mRNAs). Whereas changes in small nuclear RNA (snRNA) conformation are well documented, little is known about remodeling of small nuclear ribonucleoprotein (snRNP) structures during spliceosome activation. Here, human 45S activated spliceosomes and a previously unknown 35S U5 snRNP were isolated by immunoaffinity selection and were characterized by mass spectrometry. Comparison of their protein components with those of other snRNP and spliceosomal complexes revealed a major change in protein composition during spliceosome activation. Our data also suggest that the U5 snRNP is dramatically remodeled at this stage, with the Prp19 complex and other factors tightly associating, possibly in exchange for other U5 proteins, and suggest that after catalysis the remodeled U5 is eventually released from the postsplicing complex as a 35S snRNP particle.


Assuntos
Splicing de RNA , Ribonucleoproteína Nuclear Pequena U5/química , Spliceossomos/metabolismo , Catálise , Centrifugação com Gradiente de Concentração , Humanos , Substâncias Macromoleculares , Espectrometria de Massas , Modelos Genéticos , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , Coativadores de Receptor Nuclear , Testes de Precipitina , Precursores de RNA/metabolismo , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U5/isolamento & purificação , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Spliceossomos/química , Fatores de Transcrição
15.
Mol Cell Biol ; 22(14): 5141-56, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12077342

RESUMO

A growing body of evidence supports the coordination of pre-mRNA processing and transcriptional regulation. We demonstrate here that mammalian PRP4 kinase (PRP4K) is associated with complexes involved in both of these processes. PRP4K is implicated in pre-mRNA splicing as the homologue of the Schizosaccharomyces pombe pre-mRNA splicing kinase Prp4p, and it is enriched in SC35-containing nuclear splicing speckles. RNA interference of Caenorhabditis elegans PRP4K indicates that it is essential in metazoans. In support of a role for PRP4K in pre-mRNA splicing, we identified PRP6, SWAP, and pinin as interacting proteins and demonstrated that PRP4K is a U5 snRNP-associated kinase. In addition, BRG1 and N-CoR, components of nuclear hormone coactivator and corepressor complexes, also interact with PRP4K. PRP4K coimmunoprecipitates with N-CoR, BRG1, pinin, and PRP6, and we present data suggesting that PRP6 and BRG1 are substrates of this kinase. Lastly, PRP4K, BRG1, and PRP6 can be purified as components of the N-CoR-2 complex, and affinity-purified PRP4K/N-CoR complexes exhibit deacetylase activity. We suggest that PRP4K is an essential kinase that, in association with the both U5 snRNP and N-CoR deacetylase complexes, demonstrates a possible coordination of pre-mRNA splicing with chromatin remodeling events involved in transcriptional regulation.


Assuntos
Proteínas de Drosophila , Proteínas Nucleares/isolamento & purificação , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/isolamento & purificação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/isolamento & purificação , Proteínas Repressoras/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/isolamento & purificação , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/isolamento & purificação , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Proteínas de Schizosaccharomyces pombe , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular/metabolismo , Clonagem Molecular , DNA Helicases , Proteínas de Ligação a DNA , Genes de Helmintos , Histona Desacetilases/genética , Histona Desacetilases/isolamento & purificação , Histona Desacetilases/metabolismo , Humanos , Técnicas In Vitro , Camundongos , Dados de Sequência Molecular , Correpressor 1 de Receptor Nuclear , Proteínas Serina-Treonina Quinases/genética , Proteínas/metabolismo , Processamento Pós-Transcricional do RNA , Splicing de RNA , Fatores de Processamento de RNA , Proteínas de Ligação a RNA , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Schizosaccharomyces/enzimologia , Fatores de Transcrição/metabolismo , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido
16.
Mol Cell Biol ; 22(10): 3219-29, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11971955

RESUMO

In the U12-dependent spliceosome, the U4atac/U6atac snRNP represents the functional analogue of the major U4/U6 snRNP. Little information is available presently regarding the protein composition of the former snRNP and its association with other snRNPs. In this report we show that human U4atac/U6atac di-snRNPs associate with U5 snRNPs to form a 25S U4atac/U6atac.U5 trimeric particle. Comparative analysis of minor and major tri-snRNPs by using immunoprecipitation experiments revealed that their protein compositions are very similar, if not identical. Not only U5-specific proteins but, surprisingly, all tested U4/U6- and major tri-snRNP-specific proteins were detected in the minor tri-snRNP complex. Significantly, the major tri-snRNP-specific proteins 65K and 110K, which are required for integration of the major tri-snRNP into the U2-dependent spliceosome, were among those proteins detected in the minor tri-snRNP, raising an interesting question as to how the specificity of addition of tri-snRNP to the corresponding spliceosome is maintained. Moreover, immunodepletion studies demonstrated that the U4/U6-specific 61K protein, which is involved in the formation of major tri-snRNPs, is essential for the association of the U4atac/U6atac di-snRNP with U5 to form the U4atac/U6atac.U5 tri-snRNP. Subsequent immunoprecipitation studies demonstrated that those proteins detected in the minor tri-snRNP complex are also incorporated into U12-dependent spliceosomes. This remarkable conservation of polypeptides between minor and major spliceosomes, coupled with the absence of significant sequence similarity between the functionally analogous snRNAs, supports an evolutionary model in which most major and minor spliceosomal proteins, but not snRNAs, are derived from a common ancestor.


Assuntos
RNA Nuclear Pequeno/química , Ribonucleoproteína Nuclear Pequena U4-U6/química , Spliceossomos/metabolismo , Anticorpos/metabolismo , Núcleo Celular/química , Células HeLa , Humanos , Conformação de Ácido Nucleico , Testes de Precipitina , Subunidades Proteicas , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo
17.
EMBO J ; 21(5): 1148-57, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11867543

RESUMO

In each round of nuclear pre-mRNA splicing, the U4/U6*U5 tri-snRNP must be assembled from U4/U6 and U5 snRNPs, a reaction that is at present poorly understood. We have characterized a 61 kDa protein (61K) found in human U4/U6*U5 tri-snRNPs, which is homologous to yeast Prp31p, and show that it is required for this step. Immunodepletion of protein 61K from HeLa nuclear extracts inhibits tri-snRNP formation and subsequent spliceosome assembly and pre-mRNA splicing. Significantly, complementation with recombinant 61K protein restores each of these steps. Protein 61K is operationally defined as U4/U6 snRNP-specific as it remains bound to this particle at salt concentrations where the tri-snRNP dissociates. However, as shown by two-hybrid analysis and biochemical assays, protein 61K also interacts specifically with the U5 snRNP-associated 102K protein, indicating that it physically tethers U4/U6 to the U5 snRNP to yield the tri-snRNP. Interestingly, protein 61K is encoded by a gene (PRPF31) that has been shown to be linked to autosomal dominant retinitis pigmentosa. Thus, our studies suggest that disruptions in tri-snRNP formation and function resulting from mutations in the 61K protein may contribute to the manifestation of this disease.


Assuntos
Proteínas do Olho/fisiologia , Proteínas Fúngicas , Precursores de RNA/metabolismo , Splicing de RNA/fisiologia , Retinose Pigmentar/genética , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Spliceossomos/metabolismo , Análise Mutacional de DNA , Proteínas do Olho/genética , Genes Dominantes , Teste de Complementação Genética , Células HeLa , Humanos , Substâncias Macromoleculares , Mapeamento de Interação de Proteínas , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...