Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 119(15): 157701, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29077458

RESUMO

We report on a "giant" quantum Hall effect plateau in a graphene-based field-effect transistor where graphene is capped by a layer of the van der Waals crystal InSe. The giant quantum Hall effect plateau arises from the close alignment of the conduction band edge of InSe with the Dirac point of graphene. This feature enables the magnetic-field- and electric-field-effect-induced transfer of charge carriers between InSe and the degenerate Landau level states of the adjacent graphene layer, which is coupled by a van der Waals heterointerface to the InSe.

2.
Sci Rep ; 6: 39619, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-28008964

RESUMO

The electronic band structure of van der Waals (vdW) layered crystals has properties that depend on the composition, thickness and stacking of the component layers. Here we use density functional theory and high field magneto-optics to investigate the metal chalcogenide InSe, a recent addition to the family of vdW layered crystals, which transforms from a direct to an indirect band gap semiconductor as the number of layers is reduced. We investigate this direct-to-indirect bandgap crossover, demonstrate a highly tuneable optical response from the near infrared to the visible spectrum with decreasing layer thickness down to 2 layers, and report quantum dot-like optical emissions distributed over a wide range of energy. Our analysis also indicates that electron and exciton effective masses are weakly dependent on the layer thickness and are significantly smaller than in other vdW crystals. These properties are unprecedented within the large family of vdW crystals and demonstrate the potential of InSe for electronic and photonic technologies.

3.
Sci Rep ; 6: 32039, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27535896

RESUMO

Interband tunnelling of carriers through a forbidden energy gap, known as Zener tunnelling, is a phenomenon of fundamental and technological interest. Its experimental observation in the Esaki p-n semiconductor diode has led to the first demonstration and exploitation of quantum tunnelling in a condensed matter system. Here we demonstrate a new type of Zener tunnelling that involves the resonant transmission of electrons through zero-dimensional (0D) states. In our devices, a narrow quantum well of the mid-infrared (MIR) alloy In(AsN) is placed in the intrinsic (i) layer of a p-i-n diode. The incorporation of nitrogen in the quantum well creates 0D states that are localized on nanometer lengthscales. These levels provide intermediate states that act as "stepping stones" for electrons tunnelling across the diode and give rise to a negative differential resistance (NDR) that is weakly dependent on temperature. These electron transport properties have potential for the development of nanometre-scale non-linear components for electronics and MIR photonics.

4.
Phys Rev Lett ; 116(18): 186603, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27203338

RESUMO

We observe a series of sharp resonant features in the differential conductance of graphene-hexagonal boron nitride-graphene tunnel transistors over a wide range of bias voltages between 10 and 200 mV. We attribute them to electron tunneling assisted by the emission of phonons of well-defined energy. The bias voltages at which they occur are insensitive to the applied gate voltage and hence independent of the carrier densities in the graphene electrodes, so plasmonic effects can be ruled out. The phonon energies corresponding to the resonances are compared with the lattice dispersion curves of graphene-boron nitride heterostructures and are close to peaks in the single phonon density of states.

5.
Nat Nanotechnol ; 9(10): 808-13, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25194946

RESUMO

Recent developments in the technology of van der Waals heterostructures made from two-dimensional atomic crystals have already led to the observation of new physical phenomena, such as the metal-insulator transition and Coulomb drag, and to the realization of functional devices, such as tunnel diodes, tunnel transistors and photovoltaic sensors. An unprecedented degree of control of the electronic properties is available not only by means of the selection of materials in the stack, but also through the additional fine-tuning achievable by adjusting the built-in strain and relative orientation of the component layers. Here we demonstrate how careful alignment of the crystallographic orientation of two graphene electrodes separated by a layer of hexagonal boron nitride in a transistor device can achieve resonant tunnelling with conservation of electron energy, momentum and, potentially, chirality. We show how the resonance peak and negative differential conductance in the device characteristics induce a tunable radiofrequency oscillatory current that has potential for future high-frequency technology.

6.
Nanoscale ; 6(15): 8919-25, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24966016

RESUMO

We report on PbS colloidal nanocrystals that combine within one structure solubility in physiological solvents with near-infrared photoluminescence, and magnetic and optical properties tuneable by the controlled incorporation of magnetic impurities (Mn). We use high magnetic fields (B up to 30 T) to measure the magnetization of the nanocrystals in liquid and the strength of the sp-d exchange interaction between the exciton and the Mn-ions. With increasing Mn-content from 0.1% to 7%, the mass magnetic susceptibility increases at a rate of ∼ 10(-7) m(3) kg(-1) per Mn percentage; correspondingly, the exciton g-factor decreases from 0.47 to 0.10. The controlled modification of the paramagnetism, fluorescence and exciton g-factor of the nanocrystals is relevant to the implementation of these paramagnetic semiconductor nanocrystals in quantum technologies ranging from quantum information to magnetic resonance imaging.

7.
Phys Rev Lett ; 109(2): 024102, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-23030163

RESUMO

We demonstrate, through experiment and theory, enhanced high-frequency current oscillations due to magnetically-induced conduction resonances in superlattices. Strong increase in the ac power originates from complex single-electron dynamics, characterized by abrupt resonant transitions between unbound and localized trajectories, which trigger and shape propagating charge domains. Our data demonstrate that external fields can tune the collective behavior of quantum particles by imprinting configurable patterns in the single-particle classical phase space.

8.
Nat Commun ; 3: 1097, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23033073

RESUMO

Linear transverse magnetoresistance is commonly observed in many material systems including semimetals, narrow band-gap semiconductors, multi-layer graphene and topological insulators. It can originate in an inhomogeneous conductor from distortions in the current paths induced by macroscopic spatial fluctuations in the carrier mobility and it has been explained using a phenomenological semiclassical random resistor network model. However, the link between the linear magnetoresistance and the microscopic nature of the electron dynamics remains unknown. Here we demonstrate how the linear magnetoresistance arises from the stochastic behaviour of the electronic cycloidal trajectories around low-mobility islands in high-mobility inhomogeneous conductors and that this process is only weakly affected by the applied electric field strength. Also, we establish a quantitative link between the island morphology and the strength of linear magnetoresistance of relevance for future applications.

9.
Phys Rev Lett ; 108(11): 117402, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22540507

RESUMO

We use a femtowatt focused laser beam to locate and manipulate a single quantum tunneling channel associated with an individual InAs quantum dot within an ensemble of dots. The intensity of the directed laser beam tunes the tunneling current through the targeted dot with an effective optical gain of 10(7) and modifies the curvature of the dot's confining potential and the spatial extent of its ground state electron eigenfunction. These observations are explained by the effect of photocreated hole charges which become bound close to the targeted dot, thus acting as an optically induced gate electrode.

10.
Nanotechnology ; 23(4): 045702, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22214648

RESUMO

We report the magneto-transport properties of cellulose films comprising interconnected networks of gold nanoparticles (Au NPs). Cellulose is a biopolymer that can be made electrically conducting by cellulose regeneration in Au NP dispersions. The mechanism of electronic conduction in the Au-cellulose films changes from variable range hopping to metallic-like conduction with decreasing resistivity. Our experiments in high magnetic fields (up to 45 T) reveal negative magnetoresistance in the highly resistive films. This is attributed to the spin polarization of the Au NPs and the magnetic field induced suppression of electron spin flips during spin-polarized tunneling in the NP network.


Assuntos
Celulose/química , Ouro/química , Campos Magnéticos , Nanopartículas Metálicas/química , Movimento (Física) , Teoria Quântica , Celulose/ultraestrutura , Eletricidade , Nanopartículas Metálicas/ultraestrutura , Temperatura
11.
Nano Lett ; 10(12): 4874-9, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21038865

RESUMO

During growth of the dilute p-type ferromagnetic semiconductor Ga1-xMnxAs, interstitial manganese, Mni(2+), is formed when x exceeds 2%. The double donor Mni(2+) compensates the free holes that mediate ferromagnetism. Annealing causes out-diffusion of these interstitials, thereby increasing the Curie temperature. Here, we use cross sectional scanning tunneling microscopy and spectroscopy to visualize the potential landscape which arises due to the clustering of Mni(2+) in annealed p-i-n (GaMn)As-GaAs double barrier heterostructures. We map the local minima in the potential landscape, link them to clusters of individual Mni(2+) ions, and show that the ions are doubly charged.

12.
Phys Rev Lett ; 105(22): 227202, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-21231418

RESUMO

We analyze microscopically the valence and impurity band models of ferromagnetic (Ga,Mn)As. We find that the tight-binding Anderson approach with conventional parametrization and the full potential local-density approximation+U calculations give a very similar band structure whose microscopic spectral character is consistent with the physical premise of the k·p kinetic-exchange model. On the other hand, the various models with a band structure comprising an impurity band detached from the valence band assume mutually incompatible microscopic spectral character. By adapting the tight-binding Anderson calculations individually to each of the impurity band pictures in the single Mn impurity limit and then by exploring the entire doping range, we find that a detached impurity band does not persist in any of these models in ferromagnetic (Ga,Mn)As.

13.
Phys Rev Lett ; 105(23): 236804, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21231494

RESUMO

We measure the current due to electrons tunneling through the ground state of hydrogenic Si donors placed in a GaAs quantum well in the presence of a magnetic field tilted at an angle to the plane of the well. The component of B parallel to the direction of current compresses the donor wave function. By measuring the current as a function of the perpendicular component of B, we probe how the magnetocompression affects the spatial form of the wave function and observe directly the transition from Coulombic to magnetic confinement at high fields.

14.
Phys Rev Lett ; 101(22): 226807, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19113508

RESUMO

We report a method of creating electrostatically induced quantum dots by thermal diffusion of interstitial Mn ions out of a p-type (GaMn)As layer into the vicinity of a GaAs quantum well. This approach creates deep, approximately circular, and strongly confined dotlike potential minima in a large (200 microm) mesa diode structure without need for advanced lithography or electrostatic gating. Magnetotunneling spectroscopy of an individual dot reveals the symmetry of its electronic eigenfunctions and a rich energy level spectrum of Fock-Darwin-like states with an orbital angular momentum component |lz| from 0 to 11.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...