Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineered ; 7(6): 459-477, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27459147

RESUMO

There is a growing interest in applying tobacco agroinfiltration for recombinant protein production in a plant based system. However, in such a system, the action of proteases might compromise recombinant protein production. Protease sensitivity of model recombinant foot-and-mouth disease (FMD) virus P1-polyprotein (P1) and VP1 (viral capsid protein 1) as well as E. coli glutathione reductase (GOR) were investigated. Recombinant VP1 was more severely degraded when treated with the serine protease trypsin than when treated with the cysteine protease papain. Cathepsin L- and B-like as well as legumain proteolytic activities were elevated in agroinfiltrated tobacco tissues and recombinant VP1 was degraded when incubated with such a protease-containing tobacco extract. In silico analysis revealed potential protease cleavage sites within the P1, VP1 and GOR sequences. The interaction modeling of the single VP1 protein with the proteases papain and trypsin showed greater proximity to proteolytic active sites compared to modeling with the entire P1-polyprotein fusion complex. Several plant transcripts with differential expression were detected 24 hr post-agroinfiltration when the RNA-seq technology was applied to identify changed protease transcripts using the recently available tobacco draft genome. Three candidate genes were identified coding for proteases which included the Responsive-to-Desiccation-21 (RD21) gene and genes for coding vacuolar processing enzymes 1a (NbVPE1a) and 1b (NbVPE1b). The data demonstrates that the tested recombinant proteins are sensitive to protease action and agroinfiltration induces the expression of potential proteases that can compromise recombinant protein production.


Assuntos
Cisteína Proteases/metabolismo , Regulação da Expressão Gênica de Plantas , Engenharia Genética , Nicotiana/genética , Proteínas Recombinantes/biossíntese , Serina Proteases/metabolismo , Biodegradação Ambiental , Proteínas do Capsídeo/biossíntese , Proteínas do Capsídeo/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Cisteína Proteases/genética , Escherichia coli , Vírus da Febre Aftosa , Perfilação da Expressão Gênica , Glutationa Redutase/biossíntese , Glutationa Redutase/genética , Nitrificação , Folhas de Planta/química , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , RNA de Plantas/genética , Proteínas Recombinantes/genética , Análise de Sequência de RNA , Serina Proteases/genética , Nicotiana/química
2.
Plant Cell Environ ; 38(2): 266-79, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24329757

RESUMO

Reduced glutathione (GSH) is considered to exert a strong influence on cellular redox homeostasis and to regulate gene expression, but these processes remain poorly characterized. Severe GSH depletion specifically inhibited root meristem development, while low root GSH levels decreased lateral root densities. The redox potential of the nucleus and cytosol of Arabidopsis thaliana roots determined using roGFP probes was between -300 and -320 mV. Growth in the presence of the GSH-synthesis inhibitor buthionine sulfoximine (BSO) increased the nuclear and cytosolic redox potentials to approximately -260 mV. GSH-responsive genes including transcription factors (SPATULA, MYB15, MYB75), proteins involved in cell division, redox regulation (glutaredoxinS17, thioredoxins, ACHT5 and TH8) and auxin signalling (HECATE), were identified in the GSH-deficient root meristemless 1-1 (rml1-1) mutant, and in other GSH-synthesis mutants (rax1-1, cad2-1, pad2-1) as well as in the wild type following the addition of BSO. Inhibition of auxin transport had no effect on organ GSH levels, but exogenous auxin decreased the root GSH pool. We conclude that GSH depletion significantly increases the redox potentials of the nucleus and cytosol, and causes arrest of the cell cycle in roots but not shoots, with accompanying transcript changes linked to altered hormone responses, but not oxidative stress.


Assuntos
Arabidopsis/citologia , Arabidopsis/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa/farmacologia , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Arabidopsis/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Núcleo Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Etilenos/metabolismo , Genes de Plantas , Dissulfeto de Glutationa/metabolismo , Ácidos Indolacéticos/farmacologia , Meristema/citologia , Meristema/efeitos dos fármacos , Meristema/genética , Oxirredução/efeitos dos fármacos , Fenótipo , Ftalimidas/farmacologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Tiorredoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...