Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37893739

RESUMO

The gut microbiota is a complex community of microorganisms that plays a vital role in maintaining overall health, and is comprised of Lactobacillus and Bifidobacterium. The probiotic efficacy and safety of Lacticaseibacillus paracasei and Bifidobacterium breve for consumption were confirmed by in vitro experiments. The survival rate of the probiotics showed a significant decline in in vitro gut tract simulation; however, the survival rate was more than 50%. Also, the probiotics could adhere to Caco-2 cell lines by more than 90%, inhibit the pathogenic growths, deconjugate glycocholic acid and taurodeoxycholic acid through activity of bile salt hydrolase (BSH) proteins, and lower cholesterol levels by over 46%. Regarding safety assessment, L. paracasei and B. breve showed susceptibility to some antibiotics but resistance to vancomycin and were examined as γ-hemolytic strains. Anti-inflammatory properties of B. breve with Caco-2 epithelial cell lines showed the significantly highest value (p < 0.05) for interleukin-10. Furthermore, probiotics and prebiotics (inulin, fructooligosaccharides, and galactooligosaccharides) comprise synbiotics, which have potential effects on the increased abundance of beneficial microbiota, but do not affect the growth of harmful bacteria in feces samples. Moreover, the highest concentration of short chain fatty acid was of acetic acid, followed by propionic and butyric acid.

2.
Foods ; 12(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37835173

RESUMO

Microbial contamination affects the quality of the fermented Houttuynia cordata Thunb. (H. cordata) beverage (FHB). The present study aimed to assess the bio-preservative property of Enterococcus faecium OV3-6 (E. faecium OV3-6) during the production of FHB. The antimicrobial activity against Escherichia coli, Salmonella, Bacillus cereus, and Staphylococcus aureus and the survival of E. faecium OV3-6 were studied. Then, FHB fermentation was performed with different preservatives (non-preservative, E. faecium OV3-6, cell-free supernatant of E. faecium OV3-6, and nisin) with and without representative pathogens. The maximum antimicrobial activity against S. aureus and B. cereus was observed after 18 h of cultivation in an MRS medium. E. faecium OV3-6 was used as a starter to produce the FHB, and the strain survived up to 48 h in the fermented beverage. E. faecium OV3-6 and its cell-free supernatant inhibited the growth of E. coli, Salmonella, B. cereus, and S. aureus in the stimulated FHB. The non-preservatives and nisin-containing FHB showed inhibition against Gram-positive pathogens. The FHB treated with E. faecium OV3-6 was rich in lactic acid bacteria, and the product was at an acceptable level of pH (less than 4.3). Certain limitations were identified in the study, such as lack of nutritional, metabolomics analysis, and safety and consumer acceptability of FHB. The results suggested that E. faecium OV3-6 could be used as a bio-preservative to produce fermented plant beverages (FPBs).

3.
Pharmaceutics ; 15(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37242661

RESUMO

Alternative methods to reduce infectious diseases caused by bacterial pathogens and their virulence factors, biofilm formations, have arisen to reduce the pressure on existing or currently developed disinfectants and antimicrobial agents. The current strategies for reducing the severity of periodontal pathogen-caused disease by using beneficial bacteria and their metabolites are highly desirable. Probiotic strains of lactobacilli related to foods from Thai-fermented foods were selected and their postbiotic metabolites (PM) were isolated with inhibitory activity on periodontal pathogens and their biofilm formation. The PM from Lactiplantibacillus plantarum PD18 (PD18 PM) with the highest antagonistic effect against Streptococcus mutans, Porphyromonas gingivalis, Tannerella forsythia and Prevotella loescheii was selected from 139 Lactobacillus isolates. The minimal inhibitory concentration (MIC) and minimum biofilm inhibitory concentration (MBIC) values of PD18 PM against the pathogens ranged from 1:2 to 1:4. The PD18 PM demonstrated the ability to prevent the biofilm formation of S. mutans and P. gingivalis by showing a significant reduction in viable cells, high percentages of biofilm inhibition at 92.95 and 89.68%, and the highest effective contact times at 5 and 0.5 min, respectively. L. plantarum PD18 PM showed potential as a promising natural adjunctive agent to inhibit periodontal pathogens and their biofilms.

4.
Foods ; 12(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37107386

RESUMO

Prebiotics have become an important functional food because of their potential for modulating the gut microbiota and metabolic activities. However, different prebiotics can stimulate the growth of different probiotics. The optimization of prebiotics was focused on in this study in order to stimulate the representative probiotics' growth (Lacticaseibacillus rhamnosus (previously Lactobacillus rhamnosus) and Bifidobacterium animalis subsp. lactis) and their function. The culture medium was supplemented with three prebiotics, including inulin (INU), fructooligosaccharides (FOS), and galactooligosaccharides (GOS). All prebiotics can clearly stimulate the growth of probiotic strains in both monoculture and co-culture. The specific growth rates of L. rhamnosus and B. animalis subsp. lactis were shown in GOS (0.019 h-1) and FOS (0.023 h-1), respectively. The prebiotic index (PI) scores of INU (1.03), FOS (0.86), and GOS (0.84) in co-culture at 48 h were significantly higher than the control (glucose). The mixture of prebiotics to achieve high quality was optimized using the Box-Behnken design. The optimum prebiotic ratios of INU, FOS, and GOS were 1.33, 2.00, and 2.67% w/v, respectively, with the highest stimulated growth of probiotic strains occurring with the highest PI score (1.03) and total short chain fatty acid concentration (85.55 µmol/mL). The suitable ratio of mixed prebiotics will function as a potential ingredient for functional foods or colonic foods.

5.
Foods ; 10(5)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063215

RESUMO

Hericium erinaceus is reported as a source of several nutritional contents and bioactive compounds, especially ß-glucan. However, various uncontrolled processes lead to the formation of byproducts that can affect human health, including biogenic amines. These amines are concerning, because their presence is an important indicator of the process of hygiene and food spoilage or quality. A better understanding of various pretreatment processes can control the content of biogenic amines. In this work, we studied the effect of pretreatment processes, i.e., sample size (whole, ripping, and chopping); heating process (non-heating, blanching, and boiling); and drying method (nondrying, hot air drying, and freeze-drying) on biogenic amine contents in H. erinaceus extract. A method of the post-column high-performance liquid chromatography (HPLC) technique was used for the analysis of putrescine (PUT) and spermidine (SPD) in H. erinaceus extract following the acceptable guidelines. In this study, treatment 20 (chopping/non-heating/hot air drying) was suggested as a good choice for the pretreatment process, because low levels of PUT and SPD were shown in the extract while high levels of the bioactive compounds ß-glucan and antioxidant activity were presented. This treatment process can be applied to the industry because of its easy operation and cost-saving.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...