Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(2): eaay0922, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31934630

RESUMO

The repair of DNA double-strand breaks occurs through nonhomologous end joining or homologous recombination in vertebrate cells-a choice that is thought to be decided by a competition between DNA-dependent protein kinase (DNA-PK) and the Mre11/Rad50/Nbs1 (MRN) complex but is not well understood. Using ensemble biochemistry and single-molecule approaches, here, we show that the MRN complex is dependent on DNA-PK and phosphorylated CtIP to perform efficient processing and resection of DNA ends in physiological conditions, thus eliminating the competition model. Endonucleolytic removal of DNA-PK-bound DNA ends is also observed at double-strand break sites in human cells. The involvement of DNA-PK in MRN-mediated end processing promotes an efficient and sequential transition from nonhomologous end joining to homologous recombination by facilitating DNA-PK removal.


Assuntos
Proteína Quinase Ativada por DNA/metabolismo , DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Complexos Multiproteicos/metabolismo , Linhagem Celular , Humanos , Imagem Individual de Molécula
2.
Elife ; 72018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30523780

RESUMO

The Sae2/CtIP protein is required for efficient processing of DNA double-strand breaks that initiate homologous recombination in eukaryotic cells. Sae2/CtIP is also important for survival of single-stranded Top1-induced lesions and CtIP is known to associate directly with transcription-associated complexes in mammalian cells. Here we investigate the role of Sae2/CtIP at single-strand lesions in budding yeast and in human cells and find that depletion of Sae2/CtIP promotes the accumulation of stalled RNA polymerase and RNA-DNA hybrids at sites of highly expressed genes. Overexpression of the RNA-DNA helicase Senataxin suppresses DNA damage sensitivity and R-loop accumulation in Sae2/CtIP-deficient cells, and a catalytic mutant of CtIP fails to complement this sensitivity, indicating a role for CtIP nuclease activity in the repair process. Based on this evidence, we propose that R-loop processing by 5' flap endonucleases is a necessary step in the stabilization and removal of nascent R-loop initiating structures in eukaryotic cells.


Assuntos
Endonucleases/genética , Células Eucarióticas/metabolismo , Recombinação Homóloga/genética , RNA Helicases/genética , Proteínas de Saccharomyces cerevisiae/genética , Catálise , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , DNA Helicases , Reparo do DNA/genética , DNA Topoisomerases Tipo I/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/genética , Humanos , Enzimas Multifuncionais , Saccharomyces cerevisiae/genética
3.
Genes Dev ; 31(3): 260-274, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28242625

RESUMO

Chromatin connects DNA damage response factors to sites of damaged DNA to promote the signaling and repair of DNA lesions. The histone H2A variants H2AX, H2AZ, and macroH2A represent key chromatin constituents that facilitate DNA repair. Through proteomic screening of these variants, we identified ZMYM3 (zinc finger, myeloproliferative, and mental retardation-type 3) as a chromatin-interacting protein that promotes DNA repair by homologous recombination (HR). ZMYM3 is recruited to DNA double-strand breaks through bivalent interactions with both histone and DNA components of the nucleosome. We show that ZMYM3 links the HR factor BRCA1 to damaged chromatin through specific interactions with components of the BRCA1-A subcomplex, including ABRA1 and RAP80. By regulating ABRA1 recruitment to damaged chromatin, ZMYM3 facilitates the fine-tuning of BRCA1 interactions with DNA damage sites and chromatin. Consistent with a role in regulating BRCA1 function, ZMYM3 deficiency results in impaired HR repair and genome instability. Thus, our work identifies a critical chromatin-binding DNA damage response factor, ZMYM3, which modulates BRCA1 functions within chromatin to ensure the maintenance of genome integrity.


Assuntos
Proteína BRCA1/metabolismo , Neoplasias Ósseas/metabolismo , Cromatina/metabolismo , Reparo do DNA , Proteínas Nucleares/metabolismo , Osteossarcoma/metabolismo , Sequência de Aminoácidos , Proteína BRCA1/genética , Neoplasias Ósseas/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cromatina/genética , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA , Instabilidade Genômica , Células HEK293 , Chaperonas de Histonas , Histonas/genética , Histonas/metabolismo , Recombinação Homóloga , Humanos , Proteínas Nucleares/genética , Osteossarcoma/genética , Homologia de Sequência de Aminoácidos , Células Tumorais Cultivadas
4.
DNA Repair (Amst) ; 32: 75-81, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25957490

RESUMO

The mammalian CtIP protein and its orthologs in other eukaryotes promote the resection of DNA double-strand breaks and are essential for meiotic recombination. Here we review the current literature supporting the role of CtIP in DNA end processing and the importance of CtIP endonuclease activity in DNA repair. We also examine the regulation of CtIP function by post-translational modifications, and its involvement in transcription- and replication-dependent functions through association with other protein complexes. The tumor suppressor function of CtIP likely is dependent on a combination of these roles in many aspects of DNA metabolism.


Assuntos
Proteínas de Transporte/química , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA/metabolismo , Recombinação Homóloga , Proteínas Nucleares/química , Processamento de Proteína Pós-Traducional , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA/química , Quebras de DNA de Cadeia Simples , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Endodesoxirribonucleases , Endonucleases/química , Endonucleases/genética , Endonucleases/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
5.
J Cell Biol ; 206(7): 877-94, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25267294

RESUMO

DNA double-strand breaks (DSBs) are repaired by nonhomologous end joining (NHEJ) or homologous recombination (HR). The C terminal binding protein-interacting protein (CtIP) is phosphorylated in G2 by cyclin-dependent kinases to initiate resection and promote HR. CtIP also exerts functions during NHEJ, although the mechanism phosphorylating CtIP in G1 is unknown. In this paper, we identify Plk3 (Polo-like kinase 3) as a novel DSB response factor that phosphorylates CtIP in G1 in a damage-inducible manner and impacts on various cellular processes in G1. First, Plk3 and CtIP enhance the formation of ionizing radiation-induced translocations; second, they promote large-scale genomic deletions from restriction enzyme-induced DSBs; third, they are required for resection and repair of complex DSBs; and finally, they regulate alternative NHEJ processes in Ku(-/-) mutants. We show that mutating CtIP at S327 or T847 to nonphosphorylatable alanine phenocopies Plk3 or CtIP loss. Plk3 binds to CtIP phosphorylated at S327 via its Polo box domains, which is necessary for robust damage-induced CtIP phosphorylation at S327 and subsequent CtIP phosphorylation at T847.


Assuntos
Proteínas de Transporte/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Pontos de Checagem da Fase G1 do Ciclo Celular , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Endodesoxirribonucleases , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Camundongos , Fosforilação , Ligação Proteica , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteína de Replicação A/metabolismo , Translocação Genética , Proteínas Supressoras de Tumor
6.
Mol Cell ; 54(6): 1022-1033, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24837676

RESUMO

The carboxy-terminal binding protein (CtBP)-interacting protein (CtIP) is known to function in 5' strand resection during homologous recombination, similar to the budding yeast Sae2 protein, but its role in this process is unclear. Here, we characterize recombinant human CtIP and find that it exhibits 5' flap endonuclease activity on branched DNA structures, independent of the MRN complex. Phosphorylation of CtIP at known damage-dependent sites and other sites is essential for its catalytic activity, although the S327 and T847 phosphorylation sites are dispensable. A catalytic mutant of CtIP that is deficient in endonuclease activity exhibits wild-type levels of homologous recombination at restriction enzyme-generated breaks but is deficient in processing topoisomerase adducts and radiation-induced breaks in human cells, suggesting that the nuclease activity of CtIP is specifically required for the removal of DNA adducts at sites of DNA breaks.


Assuntos
Proteínas de Transporte/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Endonucleases/metabolismo , Proteínas Nucleares/metabolismo , Reparo de DNA por Recombinação/genética , Sítios de Ligação/genética , Proteínas de Transporte/genética , Catálise , Linhagem Celular , Sobrevivência Celular/genética , DNA/genética , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases , Endonucleases/genética , Humanos , Proteínas Nucleares/genética , Fosforilação/genética , Processamento de Proteína Pós-Traducional/genética , Radiação Ionizante , Recombinação Genética
7.
Mol Cell Biol ; 34(5): 778-93, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24344201

RESUMO

In the DNA damage response, many repair and signaling molecules mobilize rapidly at the sites of DNA double-strand breaks. This network of immediate responses is regulated at the level of posttranslational modifications that control the activation of DNA processing enzymes, protein kinases, and scaffold proteins to coordinate DNA repair and checkpoint signaling. Here we investigated the DNA damage-induced oligomeric transitions of the Sae2 protein, an important enzyme in the initiation of DNA double-strand break repair. Sae2 is a target of multiple phosphorylation events, which we identified and characterized in vivo in the budding yeast Saccharomyces cerevisiae. Both cell cycle-dependent and DNA damage-dependent phosphorylation sites in Sae2 are important for the survival of DNA damage, and the cell cycle-regulated modifications are required to prime the damage-dependent events. We found that Sae2 exists in the form of inactive oligomers that are transiently released into smaller active units by this series of phosphorylations. DNA damage also triggers removal of Sae2 through autophagy and proteasomal degradation, ensuring that active Sae2 is present only transiently in cells. Overall, this analysis provides evidence for a novel type of protein regulation where the activity of an enzyme is controlled dynamically by posttranslational modifications that regulate its solubility and oligomeric state.


Assuntos
Reparo do DNA/genética , Endonucleases/genética , Fosforilação/genética , Proteínas de Saccharomyces cerevisiae/genética , Autofagia/genética , Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Serina-Treonina Quinases/genética , Proteólise , Saccharomyces cerevisiae/genética
8.
J Biol Chem ; 284(3): 1425-34, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19017635

RESUMO

RecF pathway proteins play an important role in the restart of stalled replication and DNA repair in prokaryotes. Following DNA damage, RecF, RecR, and RecO initiate homologous recombination (HR) by loading of the RecA recombinase on single-stranded (ss) DNA, protected by ssDNA-binding protein. The specific role of RecF in this process is not well understood. Previous studies have proposed that RecF directs the RecOR complex to boundaries of damaged DNA regions by recognizing single-stranded/double-stranded (ss/ds) DNA junctions. RecF belongs to ABC-type ATPases, which function through an ATP-dependent dimerization. Here, we demonstrate that the RecF of Deinococcus radiodurans interacts with DNA as an ATP-dependent dimer, and that the DNA binding and ATPase activity of RecF depend on both the structure of DNA substrate, and the presence of RecR. We found that RecR interacts as a tetramer with the RecF dimer. RecR increases the RecF affinity to dsDNA without stimulating ATP hydrolysis but destabilizes RecF binding to ssDNA and dimerization, likely due to increasing the ATPase rate. The DNA-dependent binding of RecR to the RecF-DNA complex occurs through specific protein-protein interactions without significant contributions from RecR-DNA interactions. Finally, RecF neither alone nor in complex with RecR preferentially binds to the ss/dsDNA junction. Our data suggest that the specificity of the RecFOR complex toward the boundaries of DNA damaged regions may result from a network of protein-protein and DNA-protein interactions, rather than a simple recognition of the ss/dsDNA junction by RecF.


Assuntos
Proteínas de Bactérias/metabolismo , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Deinococcus/metabolismo , Adenosina Trifosfatases/metabolismo , Replicação do DNA/fisiologia , Dimerização , Complexos Multiproteicos/metabolismo , Ligação Proteica/fisiologia , Estrutura Quaternária de Proteína , Recombinases Rec A/metabolismo
9.
EMBO J ; 26(3): 867-77, 2007 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-17255941

RESUMO

RecF, together with RecO and RecR, belongs to a ubiquitous group of recombination mediators (RMs) that includes eukaryotic proteins such as Rad52 and BRCA2. RMs help maintain genome stability in the presence of DNA damage by loading RecA-like recombinases and displacing single-stranded DNA-binding proteins. Here, we present the crystal structure of RecF from Deinococcus radiodurans. RecF exhibits a high degree of structural similarity with the head domain of Rad50, but lacks its long coiled-coil region. The structural homology between RecF and Rad50 is extensive, encompassing the ATPase subdomain and the so-called 'Lobe II' subdomain of Rad50. The pronounced structural conservation between bacterial RecF and evolutionarily diverged eukaryotic Rad50 implies a conserved mechanism of DNA binding and recognition of the boundaries of double-stranded DNA regions. The RecF structure, mutagenesis of conserved motifs and ATP-dependent dimerization of RecF are discussed with respect to its role in promoting presynaptic complex formation at DNA damage sites.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Deinococcus/genética , Evolução Molecular , Modelos Moleculares , Sequência de Aminoácidos , Proteínas Arqueais/genética , Sequência de Bases , Clonagem Molecular , Sequência Conservada/genética , Cristalização , Dimerização , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Conformação Molecular , Dados de Sequência Molecular , Mutagênese , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
10.
Structure ; 12(10): 1881-9, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15458636

RESUMO

Recovery of arrested replication requires coordinated action of DNA repair, replication, and recombination machineries. Bacterial RecO protein is a member of RecF recombination repair pathway important for replication recovery. RecO possesses two distinct activities in vitro, closely resembling those of eukaryotic protein Rad52: DNA annealing and RecA-mediated DNA recombination. Here we present the crystal structure of the RecO protein from the extremely radiation resistant bacteria Deinococcus radiodurans (DrRecO) and characterize its DNA binding and strand annealing properties. The RecO structure is totally different from the Rad52 structure. DrRecO is comprised of three structural domains: an N-terminal domain which adopts an OB-fold, a novel alpha-helical domain, and an unusual zinc-binding domain. Sequence alignments suggest that the multidomain architecture is conserved between RecO proteins from other bacterial species and is suitable to elucidate sites of protein-protein and DNA-protein interactions necessary for RecO functions during the replication recovery and DNA repair.


Assuntos
Proteínas de Bactérias/química , Reparo do DNA , Proteínas de Ligação a DNA/química , Deinococcus/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/química , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteína Rad52 de Recombinação e Reparo de DNA , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...