Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065600

RESUMO

Curcumin is a natural bioactive component derived from the turmeric plant Curcuma longa, which exhibits a range of beneficial activities on human cells. Previously, an inhibitory effect of curcumin on platelets was demonstrated. However, it is unknown whether this inhibitory effect is due to platelet apoptosis or procoagulant platelet formation. In this study, curcumin did not activate caspase 3-dependent apoptosis of human platelets, but rather induced the formation of procoagulant platelets. Interestingly, curcumin at low concentration (5 µM) potentiated, and at high concentration (50 µM) inhibited ABT-737-induced platelet apoptosis, which was accompanied by inhibition of ABT-737-mediated thrombin generation. Platelet viability was not affected by curcumin at low concentration and was reduced by 17% at high concentration. Furthermore, curcumin-induced autophagy in human platelets via increased translocation of LC3I to LC3II, which was associated with activation of adenosine monophosphate (AMP) kinase and inhibition of protein kinase B activity. Because curcumin inhibits P-glycoprotein (P-gp) in cancer cells and contributes to overcoming multidrug resistance, we showed that curcumin similarly inhibited platelet P-gp activity. Our results revealed that the platelet inhibitory effect of curcumin is mediated by complex processes, including procoagulant platelet formation. Thus, curcumin may protect against or enhance caspase-dependent apoptosis in platelets under certain conditions.


Assuntos
Apoptose/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Plaquetas/efeitos dos fármacos , Curcumina/farmacologia , Nitrofenóis/farmacologia , Sulfonamidas/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Monofosfato de Adenosina/metabolismo , Plaquetas/metabolismo , Curcuma/química , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Humanos , Piperazinas/farmacologia , Extratos Vegetais/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255747

RESUMO

Distinct membrane receptors activate platelets by Src-family-kinase (SFK)-, immunoreceptor-tyrosine-based-activation-motif (ITAM)-dependent stimulation of spleen tyrosine kinase (Syk). Recently, we reported that platelet activation via glycoprotein (GP) VI or GPIbα stimulated the well-established Syk tyrosine (Y)-phosphorylation, but also stoichiometric, transient protein kinase C (PKC)-mediated Syk serine(S)297 phosphorylation in the regulatory interdomain-B, suggesting possible feedback inhibition. The transient nature of Syk S297 phosphorylation indicated the presence of an unknown Syk pS297 protein phosphatase. In this study, we hypothesize that the S-protein phosphatase 2A (PP2A) is responsible for Syk pS297 dephosphorylation, thereby affecting Syk Y-phosphorylation and activity in human washed platelets. Using immunoblotting, we show that specific inhibition of PP2A by okadaic acid (OA) alone leads to stoichiometric Syk S297 phosphorylation, as analyzed by Zn2+-Phos-tag gels, without affecting Syk Y-phosphorylation. Pharmacological inhibition of Syk by PRT060318 or PKC by GF109203X only minimally reduced OA-induced Syk S297 phosphorylation. PP2A inhibition by OA preceding GPVI-mediated platelet activation induced by convulxin extended Syk S297 phosphorylation but inhibited Syk Y-phosphorylation. Our data demonstrate a novel biochemical and functional link between the S-protein phosphatase PP2A and the Y-protein kinase Syk in human platelets, and suggest that PP2A represents a potential enhancer of GPVI-mediated Syk activity caused by Syk pS297 dephosphorylation.


Assuntos
Plaquetas/metabolismo , Ativação Plaquetária/genética , Proteína Fosfatase 2/genética , Quinase Syk/genética , Humanos , Fosforilação , Agregação Plaquetária/genética , Proteínas Tirosina Quinases/genética , Transdução de Sinais/genética
3.
FASEB J ; 34(7): 9337-9357, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32463151

RESUMO

Thrombin converts fibrinogen to fibrin and activates blood and vascular cells in thrombo-inflammatory diseases. Platelets are amplifiers of thrombin formation when activated by leukocyte- and vascular cell-derived thrombin. CD36 on platelets acts as sensitizer for molecules with damage-associated molecular patterns, thereby increasing platelet reactivity. Here, we investigated the role of CD36 in thrombin-generation on human platelets, including selected patients with advanced chronic kidney disease (CKD). Platelets deficient in CD36 or blocked by anti-CD36 antibody FA6.152 showed impaired thrombin generation triggered by thrombin in calibrated automated thrombography. Using platelets with congenital function defects, blocking antibodies, pharmacological inhibitors, and factor-depleted plasma, CD36-sensitive thrombin generation was dependent on FXI, fibrin, and platelet signaling via GPIbα and SFKs. CD36-deficiency or blocking suppressed thrombin-induced platelet αIIbß3 activation, granule exocytosis, binding of adhesion proteins and FV, FVIII, FIX, FX, but not anionic phospholipid exposure determined by flow cytometry. CD36 ligated specifically soluble fibrin, which recruited distinct coagulation factors via thiols. Selected patients with CKD showed elevated soluble fibrin plasma levels and enhanced thrombin-induced thrombin generation, which was normalized by CD36 blocking. Thus, CD36 is an important amplifier of platelet-dependent thrombin generation when exposure of anionic phospholipids is limited. This pathway might contribute to hypercoagulability in CKD.


Assuntos
Plaquetas/metabolismo , Antígenos CD36/metabolismo , Fator XI/metabolismo , Fibrina/metabolismo , Insuficiência Renal Crônica/metabolismo , Trombina/metabolismo , Fatores de Coagulação Sanguínea , Humanos , Ativação Plaquetária , Insuficiência Renal Crônica/patologia
4.
Int J Mol Sci ; 21(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881809

RESUMO

The spleen tyrosine kinase (Syk) is essential for immunoreceptor tyrosine-based activation motif (ITAM)-dependent platelet activation, and it is stimulated by Src-family kinase (SFK)-/Syk-mediated phosphorylation of Y352 (interdomain-B) and Y525/526 (kinase domain). Additional sites for Syk phosphorylation and protein interactions are known but remain elusive. Since Syk S297 phosphorylation (interdomain-B) was detected in platelets, we hypothesized that this phosphorylation site regulates Syk activity via protein kinase C (PKC)-and cyclic adenosine monophosphate (cAMP)-dependent pathways. ADP, the GPVI-agonist convulxin, and the GPIbα-agonist echicetin beads (EB) were used to stimulate human platelets with/without effectors. Platelet aggregation and intracellular messengers were analyzed, along with phosphoproteins, by immunoblotting using phosphosite-specific antibodies or phos-tags. ADP, convulxin, and EB upregulated Syk S297 phosphorylation, which was inhibited by iloprost (cAMP pathway). Convulxin-stimulated Syk S297 phosphorylation was stoichiometric, transient, abolished by the PKC inhibitor GF109203X, and mimicked by the PKC activator PDBu. Convulxin/EB stimulated Syk S297, Y352, and Y525/526 phosphorylation, which was inhibited by SFK and Syk inhibitors. GFX and iloprost inhibited convulxin/EB-induced Syk S297 phosphorylation but enhanced Syk tyrosine (Y352/Y525/526) and substrate (linker adaptor for T cells (LAT), phospholipase γ2 (PLC γ2)) phosphorylation. GFX enhanced convulxin/EB-increases of inositol monophosphate/Ca2+. ITAM-activated Syk stimulates PKC-dependent Syk S297 phosphorylation, which is reduced by SFK/Syk/PKC inhibition and cAMP. Inhibition of Syk S297 phosphorylation coincides with enhanced Syk activation, suggesting that S297 phosphorylation represents a mechanism for feedback inhibition in human platelets.


Assuntos
Plaquetas/metabolismo , Proteína Quinase C/metabolismo , Quinase Syk/metabolismo , Difosfato de Adenosina/farmacologia , Plaquetas/citologia , Cálcio/metabolismo , Venenos de Crotalídeos/farmacologia , Retroalimentação Fisiológica/efeitos dos fármacos , Humanos , Indóis/farmacologia , Lectinas Tipo C , Maleimidas/farmacologia , Fosfolipase C gama/metabolismo , Fosforilação/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/química , Quinase Syk/antagonistas & inibidores , Venenos de Víboras/farmacologia
5.
J Clin Med ; 8(11)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731710

RESUMO

BACKGROUND: The direct oral anticoagulant rivaroxaban inhibiting specifically activated factor X (FXa) causes delayed thrombin generation (TG) as measured by calibrated automated thrombography (CAT). The implications of these changes for assessing bleeding or residual prothrombotic risks of patients are unclear in the absence of a better understanding of the underlying mechanism. METHODS: We compared platelet rich plasma (PRP) without or with prior collagen-induced platelet aggregation (agPRP) in the CAT assay to better characterize TG in the presence of rivaroxaban. RESULTS: In the presence of rivaroxaban, TG curves in agPRP showed a distinct profile with a rapidly ascending phase followed with a protracted phase. Inhibition of tissue factor pathway inhibitor amplified the first phase of the curve which was also modulated by procoagulant phospholipids. Inhibition of FXIIa-dependent FXI activation revealed that aggregated platelets influenced the first phase by a combination of extrinsic and intrinsic coagulation pathway initiations. Thrombin-dependent amplification of TG (even prior collagen activation) was responsible for the second phase of the TG curve. CONCLUSIONS: AgPRP fully includes platelet ability to support TG and reveal distinct TG phases in the presence of direct FXa inhibitors highlighting its potential use in an anticoagulated setting.

6.
Cell Commun Signal ; 17(1): 122, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519182

RESUMO

BACKGROUND: The glycoprotein (GP) Ib-IX-V complex is a unique platelet plasma membrane receptor, which is essential for platelet adhesion and thrombus formation. GPIbα, part of the GPIb-IX-V complex, has several physiological ligands such as von Willebrand factor (vWF), thrombospondin and distinct coagulation factors, which trigger platelet activation. Despite having an important role, intracellular GPIb-IX-V signaling and its regulation by other pathways are not well defined. Our aim was to establish the intracellular signaling response of selective GPIbα activation in human platelets, in particular the role of the tyrosine kinase Syk and its regulation by cAMP/PKA and cGMP/PKG pathways, respectively. We addressed this using echicetin beads (EB), which selectively bind to GPIbα and induce platelet aggregation. METHODS: Purified echicetin from snake Echis carinatus venom was validated by mass spectrometry. Washed human platelets were incubated with EB, in the presence or absence of echicetin monomers (EM), Src family kinase (SFK) inhibitors, Syk inhibitors and the cAMP- and cGMP-elevating agents iloprost and riociguat, respectively. Platelet aggregation was analyzed by light transmission aggregometry, protein phosphorylation by immunoblotting. Intracellular messengers inositolmonophosphate (InsP1) and Ca2+i were measured by ELISA and Fluo-3 AM/FACS, respectively. RESULTS: EB-induced platelet aggregation was dependent on integrin αIIbß3 and secondary mediators ADP and TxA2, and was antagonized by EM. EB stimulated Syk tyrosine phosphorylation at Y352, which was SFK-dependent and Syk-independent, whereas Y525/526 phosphorylation was SFK-dependent and partially Syk-dependent. Furthermore, phosphorylation of both Syk Y352 and Y525/526 was completely integrin αIIbß3-independent but, in the case of Y525/526, was partially ADP/TxA2-dependent. Syk activation, observed as Y352/ Y525/Y526 phosphorylation, led to the phosphorylation of direct substrates (LAT Y191, PLCγ2 Y759) and additional targets (Akt S473). PKA/PKG pathways inhibited EB-induced platelet aggregation and Akt phosphorylation but, surprisingly, enhanced Syk and LAT/PLCγ2 tyrosine phosphorylation. A similar PKA/PKG effect was confirmed with convulxin-/GPVI-stimulated platelets. EB-induced InsP1 accumulation/InsP3 production and Ca2+-release were Syk-dependent, but only partially inhibited by PKA/PKG pathways. CONCLUSION: EB and EM are specific agonists and antagonists, respectively, of GPIbα-mediated Syk activation leading to platelet aggregation. The cAMP/PKA and cGMP/PKG pathways do not inhibit but enhance GPIbα-/GPVI-initiated, SFK-dependent Syk activation, but strongly inhibit further downstream responses including aggregation. These data establish an important intracellular regulatory network induced by GPIbα.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/fisiologia , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Quinase Syk/metabolismo , Difosfato de Adenosina/metabolismo , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Iloprosta/farmacologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Fosforilação/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas/farmacologia
7.
Thromb Haemost ; 119(6): 916-929, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31005062

RESUMO

The direct thrombin inhibitor (DTI) dabigatran is a non-vitamin K antagonist oral anticoagulant for the prevention of stroke and systemic embolism in patients with non-valvular atrial fibrillation. In addition to its anti-thrombotic efficacy, dabigatran has been suggested to exert some pro-thrombotic effect due to fostering the ligation of thrombin to its high affinity platelet receptor glycoprotein (GP) Ibα in patients with atrial fibrillation. On the other hand, we provided evidence that a member of another class of DTIs, lepirudin, stimulates the inhibitory cyclic guanosine monophosphate (cGMP)/soluble guanylate cyclase pathway in human platelets. Here, we investigated the effect of lepirudin and dabigatran spiked to platelets from healthy volunteers on GPIbα-mediated platelet aggregation and agglutination. Ristocetin/von Willebrand factor (vWF)-induced aggregation of platelets in the presence or absence of plasma was significantly inhibited by lepirudin, dabigatran and D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone (PPACK). However, ristocetin/vWF-mediated platelet agglutination and binding of vWF to platelets were not affected by the DTIs. The anti-aggregatory effect was confirmed by using the GPIbα-specific agonist echicetin beads for human and murine platelets. DTIs diminished echicetin beads-induced Syk Y352 phosphorylation (used here as readout for an early signal occurring during echicetin-induced platelet aggregation), but did not inhibit adenosine diphosphate- or thromboxane A2-induced platelet aggregation. Thrombin was not generated in response to ristocetin/vWF or echicetin beads and therefore did not explain the inhibitory effect of the DTIs. Therapeutic concentration of lepirudin and dabigatran did not affect significantly platelet vasodilator-stimulated phosphoprotein S239 phosphorylation or cGMP and cyclic adenosine monophosphate levels. These data suggest that the DTIs, lepirudin and dabigatran, impair platelet activation measured during platelet aggregation induced by ristocetin/vWF or echicetin beads.


Assuntos
Antitrombinas/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Plaquetas/fisiologia , Dabigatrana/uso terapêutico , Agregação Plaquetária/efeitos dos fármacos , Animais , Células Cultivadas , Feminino , Hirudinas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Ligação Proteica , Proteínas Recombinantes/uso terapêutico , Ristocetina/farmacologia , Fator de von Willebrand/metabolismo
8.
Nitric Oxide ; 76: 71-80, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29550521

RESUMO

Platelets are circulating sentinels of vascular integrity and are activated, inhibited, or modulated by multiple hormones, vasoactive substances or drugs. Endothelium- or drug-derived NO strongly inhibits platelet activation via activation of the soluble guanylate cyclase (sGC) and cGMP elevation, often in synergy with cAMP-elevation by prostacyclin. However, the molecular mechanisms and diversity of cGMP effects in platelets are poorly understood and sometimes controversial. Recently, we established the quantitative human platelet proteome, the iloprost/prostacyclin/cAMP/protein kinase A (PKA)-regulated phosphoproteome, and the interactions of the ADP- and iloprost/prostacyclin-affected phosphoproteome. We also showed that the sGC stimulator riociguat is in vitro a highly specific inhibitor, via cGMP, of various functions of human platelets. Here, we review the regulatory role of the cGMP/protein kinase G (PKG) system in human platelet function, and our current approaches to establish and analyze the phosphoproteome after selective stimulation of the sGC/cGMP pathway by NO donors and riociguat. Present data indicate an extensive and diverse NO/riociguat/cGMP phosphoproteome, which has to be compared with the cAMP phosphoproteome. In particular, sGC/cGMP-regulated phosphorylation of many membrane proteins, G-proteins and their regulators, signaling molecules, protein kinases, and proteins involved in Ca2+ regulation, suggests that the sGC/cGMP system targets multiple signaling networks rather than a limited number of PKG substrate proteins.


Assuntos
Plaquetas/metabolismo , GMP Cíclico/metabolismo , Óxido Nítrico/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Humanos , Ativação Plaquetária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...