Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(9): 5872-5882, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38415585

RESUMO

There is a growing demand for structure determination from small crystals, and the three-dimensional electron diffraction (3D ED) technique can be employed for this purpose. However, 3D ED has certain limitations related to the crystal thickness and data quality. We here present the application of serial X-ray crystallography (SX) with X-ray free electron lasers (XFELs) to small (a few µm or less) and thin (a few hundred nm or less) crystals of novel compounds dispersed on a substrate. For XFEL exposures, two-dimensional (2D) scanning of the substrate coupled with rotation enables highly efficient data collection. The recorded patterns can be successfully indexed using lattice parameters obtained through 3D ED. This approach is especially effective for challenging targets, including pharmaceuticals and organic materials that form preferentially oriented flat crystals in low-symmetry space groups. Some of these crystals have been difficult to solve or have yielded incomplete solutions using 3D ED. Our extensive analyses confirmed the superior quality of the SX data regardless of crystal orientations. Additionally, 2D scanning with XFEL pulses gives an overall distribution of the samples on the substrate, which can be useful for evaluating the properties of crystal grains and the quality of layered crystals. Therefore, this study demonstrates that XFEL crystallography has become a powerful tool for conducting structure studies of small crystals of organic compounds.

3.
Structure ; 31(11): 1328-1334, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37797620

RESUMO

Three-dimensional electron diffraction (3D ED) is a measurement and analysis technique in transmission electron microscopy that is used for determining atomic structures from small crystals. Diverse targets such as proteins, polypeptides, and organic compounds, whose crystals exist in aqueous solutions and organic solvents, or as dried powders, can be studied with 3D ED. We have been involved in the development of this technique, which can now rapidly process a large number of data collected through AI control, enabling efficient structure determination. Here, we introduce this method and describe our recent results. These include the structures and pathogenic mechanisms of wild-type and mutant polypeptides associated with the debilitating disease amyotrophic lateral sclerosis (ALS), the double helical structure of nanographene promoting nanofiber formation, and the structural properties of an organic semiconductor containing disordered regions. We also discuss the limitations and prospects of 3D ED compared to microcrystallography with X-ray free electron lasers.


Assuntos
Elétrons , Proteínas , Cristalografia/métodos , Cristalografia por Raios X , Proteínas/química , Microscopia Eletrônica de Transmissão , Peptídeos
4.
Nat Commun ; 14(1): 4530, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507380

RESUMO

Enantioselectivity of helical aggregation is conventionally directed either by its homochiral ingredients or by introduction of chiral catalysis. The fundamental question, then, is whether helical aggregation that consists only of achiral components can obtain enantioselectivity in the absence of chiral catalysis. Here, by exploiting enantiospecific interaction due to chiral-induced spin selectivity (CISS) that has been known to work to enantio-separate a racemic mixture of chiral molecules, we demonstrate the enantioselectivity in the assembly of mesoscale helical supramolecules consisting of achiral cobalt phthalocyanines. The helical nature in our supramolecules is revealed to be mesoscopically incorporated by dislocation-induced discretized twists, unlike the case of chiral molecules whose chirality are determined microscopically by chemical bond. The relevance of CISS effect in the discretized helical supramolecules is further confirmed by the appearance of spin-polarized current through the system. These observations mean that the application of CISS-based enantioselectivity is no longer limited to systems with microscopic chirality but is expanded to the one with mesoscopic chirality.

5.
Commun Chem ; 6(1): 98, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258702

RESUMO

Hydrogen bonding, bond polarity, and charges in protein molecules play critical roles in the stabilization of protein structures, as well as affecting their functions such as enzymatic catalysis, electron transfer, and ligand binding. These effects can potentially be measured in Coulomb potentials using cryogenic electron microscopy (cryo-EM). We here present charges and bond properties of hydrogen in a sub-1.2 Å resolution structure of a protein complex, apoferritin, by single-particle cryo-EM. A weighted difference map reveals positive densities for most hydrogen atoms in the core region of the complex, while negative densities around acidic amino-acid side chains are likely related to negative charges. The former positive densities identify the amino- and oxo-termini of asparagine and glutamine side chains. The latter observations were verified by spatial-resolution selection and a dose-dependent frame series. The average position of the hydrogen densities depends on the parent bonded-atom type, and this is validated by the estimated level of the standard uncertainties in the bond lengths.

6.
Nat Chem ; 15(4): 491-497, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36941396

RESUMO

Structure analysis of small crystals is important in areas ranging from synthetic organic chemistry to pharmaceutical and material sciences, as many compounds do not yield large crystals. Here we present the detailed characterization of the structure of an organic molecule, rhodamine-6G, determined at a resolution of 0.82 Å by an X-ray free-electron laser (XFEL). Direct comparison of this structure with that obtained by electron crystallography from the same sample batch of microcrystals shows that both methods can accurately distinguish the position of some of the hydrogen atoms, depending on the type of chemical bond in which they are involved. Variations in the distances measured by XFEL and electron diffraction reflect the expected differences in X-ray and electron scatterings. The reliability for atomic coordinates was found to be better with XFEL, but the electron beam showed a higher sensitivity to charges.

7.
Proc Natl Acad Sci U S A ; 119(38): e2122523119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36112647

RESUMO

T cell intracellular antigen-1 (TIA-1) plays a central role in stress granule (SG) formation by self-assembly via the prion-like domain (PLD). In the TIA-1 PLD, amino acid mutations associated with neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) or Welander distal myopathy (WDM), have been identified. However, how these mutations affect PLD self-assembly properties has remained elusive. In this study, we uncovered the implicit pathogenic structures caused by the mutations. NMR analysis indicated that the dynamic structures of the PLD are synergistically determined by the physicochemical properties of amino acids in units of five residues. Molecular dynamics simulations and three-dimensional electron crystallography, together with biochemical assays, revealed that the WDM mutation E384K attenuated the sticky properties, whereas the ALS mutations P362L and A381T enhanced the self-assembly by inducing ß-sheet interactions and highly condensed assembly, respectively. These results suggest that the P362L and A381T mutations increase the likelihood of irreversible amyloid fibrillization after phase-separated droplet formation, and this process may lead to pathogenicity.


Assuntos
Aminoácidos , Esclerose Lateral Amiotrófica , Príons , Agregação Patológica de Proteínas , Antígeno-1 Intracelular de Células T , Aminoácidos/química , Aminoácidos/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Miopatias Distais/genética , Miopatias Distais/metabolismo , Humanos , Mutação , Príons/química , Agregação Patológica de Proteínas/genética , Conformação Proteica em Folha beta/genética , Domínios Proteicos/genética , Antígeno-1 Intracelular de Células T/química , Antígeno-1 Intracelular de Células T/genética
8.
Front Mol Biosci ; 8: 749448, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485388

RESUMO

[This corrects the article DOI: 10.3389/fmolb.2020.612226.].

9.
Commun Biol ; 4(1): 1044, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493805

RESUMO

In cryo-electron microscopy (cryo-EM) data collection, locating a target object is error-prone. Here, we present a machine learning-based approach with a real-time object locator named yoneoLocr using YOLO, a well-known object detection system. Implementation shows its effectiveness in rapidly and precisely locating carbon holes in single particle cryo-EM and in locating crystals and evaluating electron diffraction (ED) patterns in automated cryo-electron crystallography (cryo-EX) data collection. The proposed approach will advance high-throughput and accurate data collection of images and diffraction patterns with minimal human operation.


Assuntos
Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/instrumentação , Coleta de Dados/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Algoritmos , Microscopia Crioeletrônica/instrumentação , Processamento de Imagem Assistida por Computador/instrumentação
10.
J Am Chem Soc ; 143(14): 5465-5469, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33759524

RESUMO

The layered structures of graphite and related nanographene molecules play key roles in their physical and electronic functions. However, the stacking modes of negatively curved nanographenes remain unclear, owing to the lack of suitable nanographene molecules. Herein, we report the synthesis and one-dimensional supramolecular self-assembly of negatively curved nanographenes without any assembly-assisting substituents. This curved nanographene self-assembles in various organic solvents and acts as an efficient gelator. The formation of nanofibers was confirmed by microscopic measurements, and an unprecedented double-helix assembly by continuous π-π stacking was uncovered by three-dimensional electron crystallography. This work not only reports the discovery of an all-sp2-carbon supramolecular π-organogelator with negative curvature but also demonstrates the power of three-dimensional electron crystallography for the structural determination of submicrometer-sized molecular alignment.

11.
Microscopy (Oxf) ; 70(2): 232-240, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33245780

RESUMO

We have designed and evaluated a cryo-electron microscopy (cryo-EM) system for higher-resolution single particle analysis and high-precision electron 3D crystallography. The system comprises a JEOL CRYO ARM 300 electron microscope-the first machine of this model-and a direct detection device camera, a scintillator-coupled camera, GPU clusters connected with a camera control computer and software for automated-data collection and efficient and accurate operation. The microscope provides parallel illumination of a highly coherent 300-kV electron beam to a sample from a cold-field emission gun and filters out energy-loss electrons through the sample with an in-column energy filter. The gun and filter are highly effective in improving imaging and diffraction, respectively, and have provided high quality data since July 2018. We here report on the characteristics of the cryo-EM system, updates, our progress and future plan for running such cryo-EM machines in RIKEN SPring-8 Center.

12.
Commun Biol ; 3(1): 488, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887929

RESUMO

Picorna-like plant viruses are non-enveloped RNA spherical viruses of ~30 nm. Part of the survival of these viruses depends on their capsid being stable enough to harbour the viral genome and yet malleable enough to allow its release. However, molecular mechanisms remain obscure. Here, we report a structure of a picorna-like plant virus, apple latent spherical virus, at 2.87 Å resolution by single-particle cryo-electron microscopy (cryo-EM) with a cold-field emission beam. The cryo-EM map reveals a unique structure composed of three capsid proteins Vp25, Vp20, and Vp24. Strikingly Vp25 has a long N-terminal extension, which substantially stabilises the capsid frame of Vp25 and Vp20 subunits. Cryo-EM images also resolve RNA genome leaking from a pentameric protrusion of Vp24 subunits. The structures and observations suggest that genome release occurs through occasional opening of the Vp24 subunits, possibly suppressed to a low frequency by the rigid frame of the other subunits.


Assuntos
Capsídeo/metabolismo , Genoma Viral , Secoviridae/química , Secoviridae/genética , Capsídeo/ultraestrutura , Chenopodium/virologia , Microscopia Crioeletrônica , Ligação Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/metabolismo , Secoviridae/ultraestrutura
14.
J Struct Biol ; 211(2): 107549, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32544623

RESUMO

A semi-automated protocol has been developed for rotational data collection of electron diffraction patterns by combined use of SerialEM and ParallEM, where SerialEM is used for positioning of sample crystals and ParallEM for rotational data collection. ParallEM calls standard camera control software through an AutoIt script, which adapts to software operational changes and to new GUI programs guiding other cameras. Development included periodic flashing and pausing of data collection during overnight or day-long recording with a cold field-emission beam. The protocol proved to be efficient and accurate in data collection of large-scale rotational series from two JEOL electron microscopes, a general-purpose JEM-2100 and a high-end CRYO ARM 300. Efficiency resulted from simpler steps and task specialization. It is possible to collect 12-20 rotational series from ~-68° to ~68° at a rotation speed of 1°/s in one hour without human supervision.


Assuntos
Coleta de Dados/normas , Processamento de Imagem Assistida por Computador/tendências , Microscopia Eletrônica de Transmissão/tendências , Software , Automação , Microscopia Crioeletrônica , Humanos
15.
Front Mol Biosci ; 7: 612226, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33469549

RESUMO

Electron 3D crystallography can reveal the atomic structure from undersized crystals of various samples owing to the strong scattering power of electrons. Here, a direct electron detector DE64 was tested for small and thin crystals of protein and an organic molecule using a JEOL CRYO ARM 300 electron microscope. The microscope is equipped with a cold-field emission gun operated at an accelerating voltage of 300 kV, quad condenser lenses for parallel illumination, an in-column energy filter, and a stable rotational goniometer stage. Rotational diffraction data were collected in an unsupervised manner from crystals of a heme-binding enzyme catalase and a representative organic semiconductor material Ph-BTBT-C10. The structures were determined by molecular replacement for catalase and by the direct method for Ph-BTBT-C10. The analyses demonstrate that the system works well for electron 3D crystallography of these molecules with less damaging, a smaller point spread, and less noise than using the conventional scintillator-coupled camera.

16.
J Struct Biol ; 206(2): 243-253, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30928615

RESUMO

A new cryo-EM system has been developed and investigated for use in protein electron 3D crystallography. The system provides parallel illumination of a coherent 300 kV electron beam to a sample, filters out energy-loss electrons through the sample with an in-column energy filter, and allows rotational data collection on a fast camera. It also possesses motorized cryo-sample loading and automated liquid-nitrogen filling for cooling of multiple samples. To facilitate its use, we developed GUI programs for efficient operation and accurate structure analysis. Here we report on the performance of the system and first results for thin 3D crystals of the protein complexes, catalase and membrane protein complex ExbBD. Data quality is remarkably improved with this approach, which we name eEFD (electron energy-filtered diffraction of 3D crystals), compared with those collected at 200 kV without energy filtration. Key advances include precise control of the microscope and recordings of lens fluctuations, which the programs process and respond to. We also discuss the merits of higher-energy electrons and filtration of energy-loss electrons in electron 3D crystallography.


Assuntos
Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Animais , Catalase/química , Bovinos , Microscopia Crioeletrônica/instrumentação , Conformação Proteica
17.
J Struct Biol ; 207(1): 40-48, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30991102

RESUMO

A new cryo-EM system has been investigated for single particle analysis of protein structures. The system provides parallel illumination of a highly-coherent 300 kV electron beam from a cold-field emission gun, and boosts image contrast with an in-column energy filter and a hole-free phase plate. It includes motorized cryo-sample loading and automated liquid-nitrogen filling for cooling multiple samples. In this study, we describe gun and electron beam characteristics, and demonstrate the suitability of this system for single particle reconstructions. The performance of the system is tested on two examples, a spherical virus and apoferritin. GUI programs have also been developed to control and monitor the system for correct illumination, imaging with less ellipticity and steady magnification, and timing of flashing and liquid-nitrogen filling. These programs are especially useful for efficient application of the system to single particle cryo-EM.


Assuntos
Microscopia Crioeletrônica/instrumentação , Proteínas/química , Imagem Individual de Molécula/métodos , Apoferritinas/química , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador , Vírus/química
19.
IUCrJ ; 5(Pt 3): 348-353, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29755750

RESUMO

Ionic scattering factors of atoms that compose biological molecules have been computed by the multi-configuration Dirac-Fock method. These ions are chemically unstable and their scattering factors had not been reported except for O-. Yet these factors are required for the estimation of partial charges in protein molecules and nucleic acids. The electron scattering factors of these ions are particularly important as the electron scattering curves vary considerably between neutral and charged atoms in the spatial-resolution range explored in structural biology. The calculated X-ray and electron scattering factors have then been parameterized for the major scattering curve models used in X-ray and electron protein crystallography and single-particle cryo-EM. The X-ray and electron scattering factors and the fitting parameters are presented for future reference.

20.
Elife ; 72018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29661272

RESUMO

Gram-negative bacteria import essential nutrients such as iron and vitamin B12 through outer membrane receptors. This process utilizes proton motive force harvested by the Ton system made up of three inner membrane proteins, ExbB, ExbD and TonB. ExbB and ExbD form the proton channel that energizes uptake through TonB. Recently, crystal structures suggest that the ExbB pentamer is the scaffold. Here, we present structures of hexameric complexes of ExbB and ExbD revealed by X-ray crystallography and single particle cryo-EM. Image analysis shows that hexameric and pentameric complexes coexist, with the proportion of hexamer increasing with pH. Channel current measurement and 2D crystallography support the existence and transition of the two oligomeric states in membranes. The hexameric complex consists of six ExbB subunits and three ExbD transmembrane helices enclosed within the central channel. We propose models for activation/inactivation associated with hexamer and pentamer formation and utilization of proton motive force.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Multimerização Proteica , Microscopia Crioeletrônica , Cristalografia por Raios X , Processamento de Imagem Assistida por Computador , Força Próton-Motriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...