Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 119(5): 599-611, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36929159

RESUMO

Phototrophic bacteria face diurnal variations of environmental conditions such as light and osmolarity that affect their carbon metabolism and ability to generate organic compounds. The model cyanobacterium, Synechocystis sp. PCC 6803 forms a biofilm when it encounters extreme conditions like high salt stress, but the molecular mechanisms involved in perception of environmental changes that lead to biofilm formation are unknown. Here, we studied two two-component regulatory systems (TCSs) that contain diguanylate cyclases (DGCs), which produce the second messenger c-di-GMP, as potential components of the biofilm-inducing signaling pathway in Synechocystis. Analysis of single mutants provided evidence for involvement of the response regulators, Rre2 and Rre8 in biofilm formation. A bacterial two-hybrid assay showed that Rre2 and Rre8 each formed a TCS with a specific histidine kinase, Hik12 and Hik14, respectively. The in vitro assay showed that Rre2 had DGC activity regardless of its de/phosphorylation status, whereas Rre8 required phosphorylation for DGC activity. Hik14-Rre8 likely functioned as an inducible sensing system in response to environmental change. Biofilm assays with Synechocystis mutants suggested that pairs of hik12-rre2 and hik14-rre8 responded to high salinity-induced biofilm formation. Inactivation of hik12-rre2 and hik14-rre8 did not affect the performance of the light reactions of photosynthesis. These data suggest that Hik12-Rre2 and Hik14-Rre8 participate in biofilm formation in Synechocystis by regulating c-di-GMP production via the DGC activity of Rre2 and Rre8.


Assuntos
Proteínas de Escherichia coli , Synechocystis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Biofilmes , Synechocystis/genética , Synechocystis/metabolismo , GMP Cíclico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Sci Rep ; 12(1): 13427, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927458

RESUMO

Bone growth is most remarkable during puberty. This study aimed to clarify the effects of physique and physical strength on bone mineral density and bone metabolism markers during puberty to help improve bone growth during puberty and prevent future osteoporosis. There were 277 pubertal participants (125 boys and 152 girls) in this survey from 2009 to 2015, all aged 10/11 and 14/15 years. The measures included physical fitness/physique indices (such as muscle ratio etc.), grip strength, bone density (osteo sono-assessment index, OSI), and bone metabolism markers (bone-type alkaline phosphatase and type I collagen cross-linked N-telopeptide). At 10/11-years-old for girls, a positive correlation was found between body size/grip strength and OSI. At 14/15-year-old for boys, all body size factors/grip strength were positively correlated with OSI. The change in body muscle ratio was positively correlated with change in OSI for both sexes. The height, body muscle ratio and grip strength at 10/11-year-old were significantly associated with OSI (positively) and bone metabolism markers (negatively) at 14/15-year-old for both sexes. Adequate physique building after 10/11 years for boys and before 10/11 years for girls may be effective in increasing peak bone mass.


Assuntos
Densidade Óssea , Puberdade , Adolescente , Fosfatase Alcalina , Densidade Óssea/fisiologia , Desenvolvimento Ósseo , Criança , Feminino , Humanos , Estudos Longitudinais , Masculino , Aptidão Física , Puberdade/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...