Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 115: 140-160, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28757445

RESUMO

This study investigated host-specificity and phylogenetic relationships in Australian galling flies, Fergusonina Malloch (Diptera: Fergusoninidae), in order to assess diversity and explore the evolutionary history of host plant affiliation and gall morphology. A DNA barcoding approach using COI data from 203 Fergusonina specimens from 5gall types on 56 host plant species indicated 85 presumptive fly species. These exhibited a high degree of host specificity; of the 40 species with multiple representatives, each fed only on a single host genus, 29 (72.5%) were strictly monophagous, and 11 (27.5%) were reared from multiple closely related hosts. COI variation within species was not correlated with either sample size or geographic distance. However variation was greater within oligophagous species, consistent with expectations of the initial stages of host-associated divergence during speciation. Phylogenetic analysis using both nuclear and mitochondrial genes revealed host genus-restricted clades but also clear evidence of multiple colonizations of both host plant genus and host species. With the exception of unilocular peagalls, evolution of gall type was somewhat constrained, but to a lesser degree than host plant association. Unilocular peagalls arose more often than any other gall type, were primarily located at the tips of the phylogeny, and did not form clades comprising more than a few species. For ecological reasons, species of this gall type are predicted to harbor substantially less genetic variation than others, possibly reducing evolutionary flexibility resulting in reduced diversification in unilocular gallers.


Assuntos
Dípteros/classificação , Tumores de Planta/classificação , Animais , Austrália , Evolução Biológica , Dípteros/genética , Complexo IV da Cadeia de Transporte de Elétrons/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Variação Genética , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita/fisiologia , Myrtaceae/anatomia & histologia , Myrtaceae/metabolismo , Filogenia
2.
J R Soc Interface ; 10(87): 20130533, 2013 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-23904590

RESUMO

Reproductive swarms of honeybees are faced with the problem of finding a good site to establish a new colony. We examined the potential effects of swarm size on the quality of nest-site choice through a combination of modelling and field experiments. We used an individual-based model to examine the effects of swarm size on decision accuracy under the assumption that the number of bees actively involved in the decision-making process (scouts) is an increasing function of swarm size. We found that the ability of a swarm to choose the best of two nest sites decreases as swarm size increases when there is some time-lag between discovering the sites, consistent with Janson & Beekman (Janson & Beekman 2007 Proceedings of European Conference on Complex Systems, pp. 204-211.). However, when simulated swarms were faced with a realistic problem of choosing between many nest sites discoverable at all times, larger swarms were more accurate in their decisions than smaller swarms owing to their ability to discover nest sites more rapidly. Our experimental fieldwork showed that large swarms invest a larger number of scouts into the decision-making process than smaller swarms. Preliminary analysis of waggle dances from experimental swarms also suggested that large swarms could indeed discover and advertise nest sites at a faster rate than small swarms.


Assuntos
Comunicação Animal , Abelhas/fisiologia , Comportamento de Nidação , Animais , Simulação por Computador , Tomada de Decisões , Modelos Teóricos , Densidade Demográfica , Dinâmica Populacional
3.
J Nematol ; 33(4): 239-47, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19265887

RESUMO

Fergusobia nematodes and Fergusonina flies are mutualists that cause a variety of gall types on myrtaceous plant buds and young leaves. The biology of an isolate of the gall complex was studied in its native range in Australia for possible use in southern Florida as a biological control agent against the invasive broad-leaved paperbark tree, Melaleuca quinquenervia. Timed studies with caged Fergusonina flies on young branches of M. quinquenervia revealed that females are synovigenic with lifetime fecundities of 183 +/- 42 (standard error; SE) eggs and longevities of 17 +/- 2 days. None of the male flies but all dissected female flies contained parasitic female nematodes (range = 3-15), nematode eggs (12-112), and nematode juveniles (78-1,750). Female flies deposited eggs (34 +/- 6; 8-77 per bud) and nematode juveniles (114 +/- 15; 44-207 per bud) into bud apices within 15 days. Histological sections of shoot buds suggested that nematodes induce the formation of hypertrophied, uninucleate plant cells prior to fly larval eclosion. Enlarged size, granular cytoplasm, and enlarged nucleus and nucleolus characterized these cells, which appeared similar to those of other species galled by nematodes in the Anguinidae. Observations of ovipositional behavior revealed that female Fergusonina sp. create diagnostic oviposition scars. The presence of these scars may facilitate recognition of host use during specificity screening.

4.
Vet Rec ; 78(26): 899-902, 1966 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-6007100
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...