Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269289

RESUMO

The aim of this work was to identify volatiles that contribute to the aroma of cooked cheese, including the role of fat content in their development during cooking. Volatiles and odorants in cooked mature Cheddar were identified using a combination of SPME (solid-phase microextraction)/GC-O (gas chromatography-olfactometry) and SPME/GC-MS (gas chromatography-mass spectrometry). A selection of the odorants was quantitated in six cheeses, uncooked and cooked, (mature Cheddar, high-, medium-, and low-fat mild Cheddar, mozzarella, and Parmesan). Many compounds showed significant differences between cooked and uncooked cheese; Strecker aldehydes, pyrazines, and furanones were all significantly higher in cooked cheeses than in uncooked cheese, while ethyl esters (key odorants in uncooked cheese) were not detected in any of the cooked cheese. Principal component analysis demonstrated that fat concentration in mild Cheddar was positively correlated with the formation of potential odorants (the Strecker aldehydes, methanethiol, 2-methylketones, and fatty acids) upon cooking. Potential lipid precursors for these compounds are discussed. PRACTICAL APPLICATION: This research can be used by the dairy industry to develop better cheeses, especially low- and reduced-fat cheeses, for use in cooked applications such as toppings for pizzas and ready meals. Alternatively, this research describes key volatile compounds in cooked cheese that can be used by the flavoring industry to develop authentic cooked cheese flavorings.

2.
Foods ; 12(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37893642

RESUMO

This work examined the role of selected non-volatile compounds in cooked cheese flavour, both as tastants and as precursors of aroma generation in the Maillard reaction. The effect of cooking on the concentration of selected non-volatile compounds (organic acids, sugars, amino acids, γ-glutamyl dipeptides, and diketopiperazines) in six cheeses (mature Cheddar, mozzarella, Parmesan, and mild Cheddar (low, medium, and high fat)) was determined. Sugars, amino acids, and γ-glutamyl dipeptides were extracted and analysed by LC, whereas diketopiperazines were extracted by solid-phase extraction and analysed by GC-MS. Sugars, amino acids, and γ-glutamyl dipeptides decreased in concentration during cooking, whereas diketopiperazines and some organic acids increased in concentration. Diketopiperazines were above the taste threshold in some cooked cheeses and below the threshold in uncooked cheeses. The role of fat content in cooked cheese flavour is discussed. Furthermore, γ-glutamyl dipeptide concentration increased during 24 months of ageing in low, medium, and high-fat Cheddars, with similar levels of γ-glutamyl dipeptide detected in aged low and high-fat Cheddars. This work will give valuable insight for the dairy industry to inform the development of cheeses, especially low-fat variants, for use in cooked foods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA