Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Pure Appl Chem ; 95(8): 891-897, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38013689

RESUMO

X-ray crystallography and X-ray spectroscopy using X-ray free electron lasers plays an important role in understanding the interplay of structural changes in the protein and the chemical changes at the metal active site of metalloenzymes through their catalytic cycles. As a part of such an effort, we report here our recent development of methods for X-ray absorption spectroscopy (XAS) at XFELs to study dilute biological samples, available in limited volumes. Our prime target is Photosystem II (PS II), a multi subunit membrane protein complex, that catalyzes the light-driven water oxidation reaction at the Mn4CaO5 cluster. This is an ideal system to investigate how to control multi-electron/proton chemistry, using the flexibility of metal redox states, in coordination with the protein and the water network. We describe the method that we have developed to collect XAS data using PS II samples with a Mn concentration of <1 mM, using a drop-on-demand sample delivery method.

3.
J Am Chem Soc ; 145(46): 25120-25133, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37939223

RESUMO

The P450 enzyme CYP121 from Mycobacterium tuberculosis catalyzes a carbon-carbon (C-C) bond coupling cyclization of the dityrosine substrate containing a diketopiperazine ring, cyclo(l-tyrosine-l-tyrosine) (cYY). An unusual high-spin (S = 5/2) ferric intermediate maximizes its population in less than 5 ms in the rapid freeze-quenching study of CYP121 during the shunt reaction with peracetic acid or hydrogen peroxide in acetic acid solution. We show that this intermediate can also be observed in the crystalline state by EPR spectroscopy. By developing an on-demand-rapid-mixing method for time-resolved serial femtosecond crystallography with X-ray free-electron laser (tr-SFX-XFEL) technology covering the millisecond time domain and without freezing, we structurally monitored the reaction in situ at room temperature. After a 200 ms peracetic acid reaction with the cocrystallized enzyme-substrate microcrystal slurry, a ferric-hydroperoxo intermediate is observed, and its structure is determined at 1.85 Å resolution. The structure shows a hydroperoxyl ligand between the heme and the native substrate, cYY. The oxygen atoms of the hydroperoxo are 2.5 and 3.2 Å from the iron ion. The end-on binding ligand adopts a near-side-on geometry and is weakly associated with the iron ion, causing the unusual high-spin state. This compound 0 intermediate, spectroscopically and structurally observed during the catalytic shunt pathway, reveals a unique binding mode that deviates from the end-on compound 0 intermediates in other heme enzymes. The hydroperoxyl ligand is only 2.9 Å from the bound cYY, suggesting an active oxidant role of the intermediate for direct substrate oxidation in the nonhydroxylation C-C bond coupling chemistry.


Assuntos
Ácido Peracético , Peróxidos , Ligantes , Sistema Enzimático do Citocromo P-450/metabolismo , Ferro , Heme/química , Tirosina , Carbono
4.
IUCrJ ; 10(Pt 6): 642-655, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37870936

RESUMO

The water oxidation reaction in photosystem II (PS II) produces most of the molecular oxygen in the atmosphere, which sustains life on Earth, and in this process releases four electrons and four protons that drive the downstream process of CO2 fixation in the photosynthetic apparatus. The catalytic center of PS II is an oxygen-bridged Mn4Ca complex (Mn4CaO5) which is progressively oxidized upon the absorption of light by the chlorophyll of the PS II reaction center, and the accumulation of four oxidative equivalents in the catalytic center results in the oxidation of two waters to dioxygen in the last step. The recent emergence of X-ray free-electron lasers (XFELs) with intense femtosecond X-ray pulses has opened up opportunities to visualize this reaction in PS II as it proceeds through the catalytic cycle. In this review, we summarize our recent studies of the catalytic reaction in PS II by following the structural changes along the reaction pathway via room-temperature X-ray crystallography using XFELs. The evolution of the electron density changes at the Mn complex reveals notable structural changes, including the insertion of OX from a new water molecule, which disappears on completion of the reaction, implicating it in the O-O bond formation reaction. We were also able to follow the structural dynamics of the protein coordinating with the catalytic complex and of channels within the protein that are important for substrate and product transport, revealing well orchestrated conformational changes in response to the electronic changes at the Mn4Ca cluster.

5.
Methods Enzymol ; 688: 307-348, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37748830

RESUMO

The ultrashort (10s of femtoseconds) X-ray pulses generated by X-ray free electron lasers enable the measurement of X-ray diffraction and spectroscopic data from radiation-sensitive metalloenzymes at room temperature while mostly avoiding the effects of radiation damage usually encountered when performing such experiments at synchrotron sources. Here we discuss an approach to measure both X-ray emission and X-ray crystallographic data at the same time from the same sample volume. The droplet-on-tape setup described allows for efficient sample use and the integration of different reaction triggering options in order to conduct time-resolved studies with limited sample amounts. The approach is illustrated by two examples, photosystem II that catalyzes the light-driven oxidation of water to oxygen, and isopenicillin N synthase, an enzyme that catalyzes the double ring cyclization of a tripeptide precursor into the ß-lactam isopenicillin and can be activated by oxygen exposure. We describe the necessary steps to obtain microcrystals of both proteins as well as the operation procedure for the drop-on-tape setup and details of the data acquisition and processing involved in this experiment. At the end, we present how the combination of time-resolved X-ray emission spectra and diffraction data can be used to improve the knowledge about the enzyme reaction mechanism.


Assuntos
Metaloproteínas , Raios X , Temperatura , Análise Espectral , Cristalografia por Raios X , Oxigênio
6.
Curr Opin Struct Biol ; 80: 102604, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148654

RESUMO

With the recent advances in serial crystallography methods at both synchrotron and X-ray free electron laser sources, more details of intermediate or transient states of the catalytic reactions are being revealed structurally. These structural studies of reaction dynamics drive the need for on-line in crystallo spectroscopy methods to complement the crystallography experiment. The recent applications of combined spectroscopy and crystallography methods enable on-line determination of in crystallo reaction kinetics and structures of catalytic intermediates, sample integrity, and radiation-induced sample modifications, if any, as well as heterogeneity of crystals from different preparations or sample batches. This review describes different modes of spectroscopy that are combined with the crystallography experiment at both synchrotron and X-ray free-electron laser facilities, and the complementary information that each method can provide to facilitate the structural study of enzyme catalysis and protein dynamics.


Assuntos
Elétrons , Síncrotrons , Cristalografia por Raios X , Análise Espectral , Lasers
7.
Nature ; 617(7961): 629-636, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37138085

RESUMO

In natural photosynthesis, the light-driven splitting of water into electrons, protons and molecular oxygen forms the first step of the solar-to-chemical energy conversion process. The reaction takes place in photosystem II, where the Mn4CaO5 cluster first stores four oxidizing equivalents, the S0 to S4 intermediate states in the Kok cycle, sequentially generated by photochemical charge separations in the reaction center and then catalyzes the O-O bond formation chemistry1-3. Here, we report room temperature snapshots by serial femtosecond X-ray crystallography to provide structural insights into the final reaction step of Kok's photosynthetic water oxidation cycle, the S3→[S4]→S0 transition where O2 is formed and Kok's water oxidation clock is reset. Our data reveal a complex sequence of events, which occur over micro- to milliseconds, comprising changes at the Mn4CaO5 cluster, its ligands and water pathways as well as controlled proton release through the hydrogen-bonding network of the Cl1 channel. Importantly, the extra O atom Ox, which was introduced as a bridging ligand between Ca and Mn1 during the S2→S3 transition4-6, disappears or relocates in parallel with Yz reduction starting at approximately 700 µs after the third flash. The onset of O2 evolution, as indicated by the shortening of the Mn1-Mn4 distance, occurs at around 1,200 µs, signifying the presence of a reduced intermediate, possibly a bound peroxide.


Assuntos
Oxigênio , Fotossíntese , Complexo de Proteína do Fotossistema II , Oxirredução , Oxigênio/química , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Prótons , Água/química , Água/metabolismo , Manganês/química , Manganês/metabolismo , Cálcio/química , Cálcio/metabolismo , Peróxidos/metabolismo
8.
FEBS Lett ; 597(1): 30-37, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36310373

RESUMO

Ever since the discovery that Mn was required for oxygen evolution in plants by Pirson in 1937 and the period-four oscillation in flash-induced oxygen evolution by Joliot and Kok in the 1970s, understanding of this process has advanced enormously using state-of-the-art methods. The most recent in this series of innovative techniques was the introduction of X-ray free-electron lasers (XFELs) a decade ago, which led to another quantum leap in the understanding in this field, by enabling operando X-ray structural and X-ray spectroscopy studies at room temperature. This review summarizes the current understanding of the structure of Photosystem II (PS II) and its catalytic centre, the Mn4 CaO5 complex, in the intermediate Si (i = 0-4)-states of the Kok cycle, obtained using XFELs.


Assuntos
Fotossíntese , Água , Água/química , Oxirredução , Complexo de Proteína do Fotossistema II/metabolismo , Lasers , Oxigênio/química
9.
Biochim Biophys Acta Bioenerg ; 1864(1): 148918, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36116485

RESUMO

Time-resolved step-scan Fourier transform infrared difference spectroscopy has been used to study cyanobacterial photosystem I photosynthetic reaction centers from Synechocystis sp. PCC 6803 (S6803) with four high-potential, 1,4-naphthoquinones incorporated into the A1 binding site. The high-potential naphthoquinones are 2-chloro-, 2-bromo-, 2,3-dichloro- and 2,3-dibromo-1,4-naphthoquinone. "Foreign minus native" double difference spectra (DDS) were constructed by subtracting difference spectra for native photosystem I (with phylloquinone in the A1 binding site) from corresponding spectra obtained using photosystem I with the different quinones incorporated. To help assess and assign bands in the difference and double difference spectra, density functional theory based vibrational frequency calculations for the different quinones in solvent, or in the presence of a single asymmetric H- bond to either a water molecule or a peptide backbone NH group, were undertaken. Calculated and experimental spectra agree best for the peptide backbone asymmetrically H- bonded system. By comparing multiple sets of double difference spectra, several new bands for the native quinone (phylloquinone) are identified. By comparing calculated and experimental spectra we conclude that the mono-substituted halogenated NQs can occupy the binding site in either of two different orientations, with the chlorine or bromine atom being either ortho or meta to the H- bonded CO group.


Assuntos
Naftoquinonas , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Vitamina K 1/metabolismo , Sítios de Ligação , Quinonas/química
10.
J Inorg Biochem ; 230: 111768, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35202981

RESUMO

Methyl-Coenzyme M Reductase (MCR) catalyzes the biosynthesis of methane in methanogenic archaea, using a catalytic Ni-centered Cofactor F430 in its active site. It also catalyzes the reverse reaction, that is, the anaerobic activation and oxidation, including the cleavage of the CH bond in methane. Because methanogenesis is the major source of methane on earth, understanding the reaction mechanism of this enzyme can have massive implications in global energy balances. While recent publications have proposed a radical-based catalytic mechanism as well as novel sulfonate-based binding modes of MCR for its native substrates, the structure of the active state of MCR, as well as a complete characterization of the reaction, remain elusive. Previous attempts to structurally characterize the active MCR-Ni(I) state have been unsuccessful due to oxidation of the redox- sensitive catalytic Ni center. Further, while many cryo structures of the inactive Ni(II)-enzyme in various substrates-bound forms have been published, no room temperature structures have been reported, and the structure and mechanism of MCR under physiologically relevant conditions is not known. In this study, we report the first room temperature structure of the MCRred1-silent Ni(II) form using an X-ray Free-Electron Laser (XFEL), with simultaneous X-ray Emission Spectroscopy (XES) and X-ray Diffraction (XRD) data collection. In celebration of the seminal contributions of inorganic chemist Dick Holm to our understanding of nickel-based catalysis, we are honored to announce our findings in this special issue dedicated to this remarkable pioneer of bioinorganic chemistry.


Assuntos
Lasers , Metano , Cristalografia por Raios X , Metano/química , Oxirredução , Oxirredutases , Temperatura
11.
Struct Dyn ; 8(6): 064302, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34849380

RESUMO

In the last ten years, x-ray free-electron lasers (XFELs) have been successfully employed to characterize metalloproteins at room temperature using various techniques including x-ray diffraction, scattering, and spectroscopy. The approach has been to outrun the radiation damage by using femtosecond (fs) x-ray pulses. An example of an important and damage sensitive active metal center is the Mn4CaO5 cluster in photosystem II (PS II), the catalytic site of photosynthetic water oxidation. The combination of serial femtosecond x-ray crystallography and Kß x-ray emission spectroscopy (XES) has proven to be a powerful multimodal approach for simultaneously probing the overall protein structure and the electronic state of the Mn4CaO5 cluster throughout the catalytic (Kok) cycle. As the observed spectral changes in the Mn4CaO5 cluster are very subtle, it is critical to consider the potential effects of the intense XFEL pulses on the Kß XES signal. We report here a systematic study of the effects of XFEL peak power, beam focus, and dose on the Mn Kß1,3 XES spectra in PS II over a wide range of pulse parameters collected over seven different experimental runs using both microcrystal and solution PS II samples. Our findings show that for beam intensities ranging from ∼5 × 1015 to 5 × 1017 W/cm2 at a pulse length of ∼35 fs, the spectral effects are small compared to those observed between S-states in the Kok cycle. Our results provide a benchmark for other XFEL-based XES studies on metalloproteins, confirming the viability of this approach.

12.
Sci Rep ; 11(1): 21787, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750381

RESUMO

Photosystem I (PS I) has a symmetric structure with two highly similar branches of pigments at the center that are involved in electron transfer, but shows very different efficiency along the two branches. We have determined the structure of cyanobacterial PS I at room temperature (RT) using femtosecond X-ray pulses from an X-ray free electron laser (XFEL) that shows a clear expansion of the entire protein complex in the direction of the membrane plane, when compared to previous cryogenic structures. This trend was observed by complementary datasets taken at multiple XFEL beamlines. In the RT structure of PS I, we also observe conformational differences between the two branches in the reaction center around the secondary electron acceptors A1A and A1B. The π-stacked Phe residues are rotated with a more parallel orientation in the A-branch and an almost perpendicular confirmation in the B-branch, and the symmetry breaking PsaB-Trp673 is tilted and further away from A1A. These changes increase the asymmetry between the branches and may provide insights into the preferential directionality of electron transfer.


Assuntos
Complexo de Proteína do Fotossistema I/química , Vitamina K 1/química , Cristalografia por Raios X , Fotossíntese , Estrutura Terciária de Proteína , Temperatura , Thermosynechococcus
13.
Sci Adv ; 7(34)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34417180

RESUMO

Isopenicillin N synthase (IPNS) catalyzes the unique reaction of l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) with dioxygen giving isopenicillin N (IPN), the precursor of all natural penicillins and cephalosporins. X-ray free-electron laser studies including time-resolved crystallography and emission spectroscopy reveal how reaction of IPNS:Fe(II):ACV with dioxygen to yield an Fe(III) superoxide causes differences in active site volume and unexpected conformational changes that propagate to structurally remote regions. Combined with solution studies, the results reveal the importance of protein dynamics in regulating intermediate conformations during conversion of ACV to IPN. The results have implications for catalysis by multiple IPNS-related oxygenases, including those involved in the human hypoxic response, and highlight the power of serial femtosecond crystallography to provide insight into long-range enzyme dynamics during reactions presently impossible for nonprotein catalysts.


Assuntos
Elétrons , Oxirredutases , Catálise , Domínio Catalítico , Cristalografia por Raios X , Compostos Férricos , Humanos , Lasers , Oxirredutases/química , Oxigênio/química , Penicilinas/química , Penicilinas/metabolismo , Especificidade por Substrato
14.
Photosynth Res ; 145(2): 97-109, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32447611

RESUMO

In photosystem I (PSI) complexes at room temperature electron transfer from A1- to FX is an order of magnitude faster on the B-branch compared to the A-branch. One factor that might contribute to this branch asymmetry in time constants is TrpB673 (Thermosynechococcus elongatus numbering), which is located between A1B and FX. The corresponding residue on the A-branch, between A1A and FX, is GlyA693. Here, microsecond time-resolved step-scan FTIR difference spectroscopy at 77 K has been used to study isolated PSI complexes from wild type and TrpB673Phe mutant (WB673F mutant) cells from Synechocystis sp. PCC 6803. WB673F mutant cells require glucose for growth and are light sensitive. Photoaccumulated FTIR difference spectra indicate changes in amide I and II protein vibrations upon mutation of TrpB673 to Phe, indicating the protein environment near FX is altered upon mutation. In the WB673F mutant PSI samples, but not in WT PSI samples, the phylloquinone molecule that occupies the A1 binding site is likely doubly protonated following long periods of repetitive flash illumination at room temperature. PSI with (doubly) protonated quinone in the A1 binding site are not functional in electron transfer. However, electron transfer functionality can be restored by incubating the light-treated mutant PSI samples in the presence of added phylloquinone.


Assuntos
Transporte de Elétrons/efeitos dos fármacos , Complexo de Proteína do Fotossistema I/metabolismo , Quinonas/metabolismo , Synechocystis/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Modelos Moleculares , Mutagênese Sítio-Dirigida , Complexo de Proteína do Fotossistema I/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Synechocystis/genética , Vitamina K 1/metabolismo
15.
Biochim Biophys Acta Bioenerg ; 1861(5-6): 148173, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32059842

RESUMO

Infrared absorption bands associated with the neutral state of quinones in the A1 binding site in photosystem I (PSI) have been difficult to identify in the past. This problem is addressed here, where time-resolved step-scan FTIR difference spectroscopy at 77 K has been used to study PSI with six different quinones incorporated into the A1 binding site. (P700+A1- - P700A1) and (A1- - A1) FTIR difference spectra (DS) were obtained for PSI with the different quinones incorporated, and several double-difference spectra (DDS) were constructed from the DS. From analysis of the DS and DDS, in combination with density functional theory based vibrational frequency calculations of the quinones, the neutral state bands of the incorporated quinones are identified and assigned. For neutral PhQ in the A1 binding site, infrared absorption bands were identified near 1665 and 1635 cm-1, that are due to the C1O and C4O stretching vibrations of the incorporated PhQ, respectively. These assignments indicate a 30 cm-1 separation between the C1O and C4O modes, considerably less than the ~80 cm-1 found for similar modes of PhQ-. The C4O mode downshifts due to hydrogen bonding, so the suggestion is that hydrogen bonding is weaker for the neutral state compared to the anion state, indicating radical-induced proton dynamics associated with the quinone in the A1 binding site in PSI.


Assuntos
Complexo de Proteína do Fotossistema I/química , Quinonas/química , Amidas/química , Ânions , Sítios de Ligação , Isótopos de Carbono , Transporte de Elétrons , Ésteres/química , Modelos Moleculares , Fotossíntese , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo , Vibração
16.
Biochim Biophys Acta Bioenerg ; 1860(9): 699-707, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31306624

RESUMO

Time-resolved (P700+A1- - P700A1) FTIR difference spectra have been obtained using photosystem I (PSI) particles with several different quinones incorporated into the A1 protein binding site. Difference spectra were obtained for PSI with unlabeled and 18O labeled phylloquinone (2-methyl-3-phytyl-1,4-naphthoquinone) and 2-methyl-1,4-naphthaquinone (2MNQ) incorporated, and for PSI with unlabeled 2,3-dimethyl-1,4-naphthoquinone (DMNQ) incorporated. (18O - 16O), (2MNQ - PhQ) and (DMNQ - PhQ) FTIR double difference spectra were constructed from the difference spectra. These double difference spectra allow one to more easily distinguish protein and pigment bands in convoluted difference spectra. To further aid in the interpretation of the difference spectra, particularly the spectra associated with the semiquinones, we have used two-layer ONIOM methods to calculate corresponding difference and double difference spectra. In all cases, the experimental and calculated double difference spectra are in excellent agreement. In previous two and three-layer ONIOM calculations it was not possible to adequately simulate multiple difference and double difference spectra. So, the computational approach outlined here is an improvement over previous calculations. It is shown that the calculated spectra can vary depending on the details of the molecular model that is used. Specifically, a molecular model that includes several water molecules that are near the incorporated semiquinones is required.


Assuntos
Complexo de Proteína do Fotossistema I/metabolismo , Quinonas/química , Synechococcus/metabolismo , Sítios de Ligação , Transporte de Elétrons , Modelos Moleculares , Complexo de Proteína do Fotossistema I/química , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Vibração
17.
Biochim Biophys Acta Bioenerg ; 1860(6): 452-460, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30986391

RESUMO

(P700+ - P700) Fourier transform visible and infrared difference spectra (DS) have been obtained using photosystem I (PSI) complexes isolated from cells of Fischerella thermalis PCC 7521 grown under white light (WL) or far-red light (FRL). PSI from cells grown under FRL (FRL-PSI) contain ~8 chlorophyll f (Chl f) molecules (Shen et al., Photosynth. Res. Jan. 2019). Both the visible and infrared DS indicate that neither the PA or PB pigments of P700 are Chl f molecules, but do support the conclusion that at least one of the A-1 cofactors is a Chl f molecule. The FTIR DS indicate that the hydrogen bond to the 131-keto CO group of the PA pigment of P700 is weakened in FRL-PSI, as might be expected given that the proteins that bind the P700 pigments are substantially different in FRL-PSI (Gan et al., Science 345, 1312-1317, 2014). The FTIR DS obtained using FRL-PSI display a band at 1664 cm-1 that is assigned (based on density functional theory calculations) to the 21-formyl CO group of Chl f, that upshifts 5 cm-1 upon P700+ formation. This is much less than expected for a cation-induced upshift, indicating that the Chl f molecule is not one of the pigments of P700. In WL-PSI the A-1 cofactor is a Chl a molecule with 131-keto and 133-methylester CO mode vibrations at 1696 and 1750 cm-1, respectively. In FRL-PSI the A-1 cofactor is a Chl f molecule with 131-keto and 133-methylester CO mode vibrations at 1702 and 1754 cm-1, respectively.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/efeitos da radiação , Clorofila/análogos & derivados , Cianobactérias/química , Luz , Complexo de Proteína do Fotossistema I/química , Proteínas de Bactérias/metabolismo , Clorofila/química , Clorofila/metabolismo , Cianobactérias/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Espectrofotometria
18.
Biochim Biophys Acta Bioenerg ; 1859(11): 1199-1206, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30251701

RESUMO

Time-resolved step-scan FTIR difference spectroscopy has been used to study photosystem I (PSI) with plastoquinone-9 (PQ) and two other benzoquinones (2,6-dimethyl-1,4-benzoquinone and 2,3,5,6-tetrachloro-1,4-benzoquinone) incorporated into the A1 binding site. By subtracting a (P700+A1- - P700A1) FTIR difference spectrum for PSI with the native phylloquinone (PhQ) incorporated from corresponding spectra for PSI with different benzoquinones (BQs) incorporated, FTIR double difference spectra are produced, that display bands associated with vibrational modes of the quinones, without interference from features associated with protein vibrational modes. Molecular models for BQs involved in asymmetric hydrogen bonding were constructed and used in vibrational mode frequency calculations. The calculated data were used to aid in the interpretation and assignment of bands in the experimental spectra. We show that the calculations capture the general trends found in the experimental spectra. By comparing four different FTIR double difference spectra we are able to verify unambiguously bands associated with phyllosemiquinone in PSI at 1495 and 1415 cm-1. We also resolve a previously unrecognized band of phyllosemiquinone at 1476 cm-1 that calculations suggest is due in part to a C4-⃛O stretching mode. For PSI with PQ incorporated, calculations and experiment taken together indicate that the C1-⃛O and C4-⃛O vibrational modes of the semiquinone give rise to bands at 1487 and 1444 cm-1, respectively. This is very distinct compared to PSI with PhQ incorporated. From the calculated and experimental spectra, we show that it is possible to distinguish between two possible orientations of PQ in the A1 protein binding site.


Assuntos
Benzoquinonas/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Sítios de Ligação , Teoria da Densidade Funcional , Complexo de Proteína do Fotossistema I/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo , Vibração
19.
PLoS One ; 13(6): e0199112, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29894493

RESUMO

Enveloped viruses, such as HIV, Ebola and Influenza, are among the most deadly known viruses. Cellular membrane penetration of enveloped viruses is a critical step in the cascade of events that lead to entry into the host cell. Conventional ensemble fusion assays rely on collective responses to membrane fusion events, and do not allow direct and quantitative studies of the subtle and intricate fusion details. Such details are accessible via single particle investigation techniques, however. Here, we implement nano-infrared spectroscopic imaging to investigate the chemical and structural modifications that occur prior to membrane fusion in the single archetypal enveloped virus, influenza X31. We traced in real-space structural and spectroscopic alterations that occur during environmental pH variations in single virus particles. In addition, using nanospectroscopic imaging we quantified the effectiveness of an antiviral compound in stopping viral membrane disruption (a novel mechanism for inhibiting viral entry into cells) during environmental pH variations.


Assuntos
Fusão de Membrana , Nanotecnologia/métodos , Infecções por Orthomyxoviridae/virologia , Orthomyxoviridae/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Vírion/química , Vírion/fisiologia , Animais , Membrana Celular/química , Cães , Células Madin Darby de Rim Canino , Orthomyxoviridae/fisiologia , Internalização do Vírus
20.
Photosynth Res ; 137(1): 85-93, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29332243

RESUMO

Time-resolved FTIR difference spectroscopy has been used to study photosystem I (PSI) particles with three different benzoquinones [plastoquinone-9 (PQ), 2,6-dimethyl-1,4-benzoquinone (DMBQ), 2,3,5,6-tetrachloro-1,4-benzoquinone (Cl4BQ)] incorporated into the A1 binding site. If PSI samples are cooled in the dark to 77 K, the incorporated benzoquinones are shown to be functional, allowing the production of time-resolved (P700+A1--P700A1) FTIR difference spectra. If samples are subjected to repetitive flash illumination at room temperature prior to cooling, however, the time-resolved FTIR difference spectra at 77 K display contributions typical of the P700 triplet state (3P700), indicating a loss of functionality of the incorporated benzoquinones, that occurs because of double protonation of the incorporated benzoquinones. The benzoquinone protonation mechanism likely involves nearby water molecules but does not involve the terminal iron-sulfur clusters FA and FB. These results and conclusions resolve discrepancies between results from previous low-temperature FTIR and EPR studies on similar PSI samples with PQ incorporated.


Assuntos
Benzoquinonas/química , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Sítios de Ligação , Cloranila/química , Plastoquinona/química , Espectroscopia de Infravermelho com Transformada de Fourier , Synechocystis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...