Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 83(22): 3796-3812, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37812025

RESUMO

Multiple large-scale genomic profiling efforts have been undertaken in osteosarcoma to define the genomic drivers of tumorigenesis, therapeutic response, and disease recurrence. The spatial and temporal intratumor heterogeneity could also play a role in promoting tumor growth and treatment resistance. We conducted longitudinal whole-genome sequencing of 37 tumor samples from 8 patients with relapsed or refractory osteosarcoma. Each patient had at least one sample from a primary site and a metastatic or relapse site. Subclonal copy-number alterations were identified in all patients except one. In 5 patients, subclones from the primary tumor emerged and dominated at subsequent relapses. MYC gain/amplification was enriched in the treatment-resistant clones in 6 of 7 patients with multiple clones. Amplifications in other potential driver genes, such as CCNE1, RAD21, VEGFA, and IGF1R, were also observed in the resistant copy-number clones. A chromosomal duplication timing analysis revealed that complex genomic rearrangements typically occurred prior to diagnosis, supporting a macroevolutionary model of evolution, where a large number of genomic aberrations are acquired over a short period of time followed by clonal selection, as opposed to ongoing evolution. A mutational signature analysis of recurrent tumors revealed that homologous repair deficiency (HRD)-related SBS3 increases at each time point in patients with recurrent disease, suggesting that HRD continues to be an active mutagenic process after diagnosis. Overall, by examining the clonal relationships between temporally and spatially separated samples from patients with relapsed/refractory osteosarcoma, this study sheds light on the intratumor heterogeneity and potential drivers of treatment resistance in this disease. SIGNIFICANCE: The chemoresistant population in recurrent osteosarcoma is subclonal at diagnosis, emerges at the time of primary resection due to selective pressure from neoadjuvant chemotherapy, and is characterized by unique oncogenic amplifications.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Osteossarcoma/genética , Sequenciamento Completo do Genoma , Genômica , Neoplasias Ósseas/genética , Recidiva , Variações do Número de Cópias de DNA , Mutação
2.
JCO Precis Oncol ; 7: e2300170, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37285558
3.
Nat Commun ; 14(1): 749, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765116

RESUMO

Despite insights gained by bulk DNA sequencing of cancer it remains challenging to resolve the admixture of normal and tumor cells, and/or of distinct tumor subclones; high-throughput single-cell DNA sequencing circumvents these and brings cancer genomic studies to higher resolution. However, its application has been limited to liquid tumors or a small batch of solid tumors, mainly because of the lack of a scalable workflow to process solid tumor samples. Here we optimize a highly automated nuclei extraction workflow that achieves fast and reliable targeted single-nucleus DNA library preparation of 38 samples from 16 pancreatic ductal adenocarcinoma patients, with an average library yield per sample of 2867 single nuclei. We demonstrate that this workflow not only performs well using low cellularity or low tumor purity samples but reveals genomic evolution patterns of pancreatic ductal adenocarcinoma as well.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Análise de Sequência de DNA , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala
5.
bioRxiv ; 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36711976

RESUMO

Multiple large-scale tumor genomic profiling efforts have been undertaken in osteosarcoma, however, little is known about the spatial and temporal intratumor heterogeneity and how it may drive treatment resistance. We performed whole-genome sequencing of 37 tumor samples from eight patients with relapsed or refractory osteosarcoma. Each patient had at least one sample from a primary site and a metastatic or relapse site. We identified subclonal copy number alterations in all but one patient. We observed that in five patients, a subclonal copy number clone from the primary tumor emerged and dominated at subsequent relapses. MYC gain/amplification was enriched in the treatment-resistant clone in 6 out of 7 patients with more than one clone. Amplifications in other potential driver genes, such as CCNE1, RAD21, VEGFA, and IGF1R, were also observed in the resistant copy number clones. Our study sheds light on intratumor heterogeneity and the potential drivers of treatment resistance in osteosarcoma.

6.
Nature ; 606(7913): 389-395, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35589842

RESUMO

Cancer immunoediting1 is a hallmark of cancer2 that predicts that lymphocytes kill more immunogenic cancer cells to cause less immunogenic clones to dominate a population. Although proven in mice1,3, whether immunoediting occurs naturally in human cancers remains unclear. Here, to address this, we investigate how 70 human pancreatic cancers evolved over 10 years. We find that, despite having more time to accumulate mutations, rare long-term survivors of pancreatic cancer who have stronger T cell activity in primary tumours develop genetically less heterogeneous recurrent tumours with fewer immunogenic mutations (neoantigens). To quantify whether immunoediting underlies these observations, we infer that a neoantigen is immunogenic (high-quality) by two features-'non-selfness'  based on neoantigen similarity to known antigens4,5, and 'selfness'  based on the antigenic distance required for a neoantigen to differentially bind to the MHC or activate a T cell compared with its wild-type peptide. Using these features, we estimate cancer clone fitness as the aggregate cost of T cells recognizing high-quality neoantigens offset by gains from oncogenic mutations. With this model, we predict the clonal evolution of tumours to reveal that long-term survivors of pancreatic cancer develop recurrent tumours with fewer high-quality neoantigens. Thus, we submit evidence that that the human immune system naturally edits neoantigens. Furthermore, we present a model to predict how immune pressure induces cancer cell populations to evolve over time. More broadly, our results argue that the immune system fundamentally surveils host genetic changes to suppress cancer.


Assuntos
Antígenos de Neoplasias , Sobreviventes de Câncer , Neoplasias Pancreáticas , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Linfócitos T/imunologia , Evasão Tumoral/imunologia
7.
Cell Rep ; 39(5): 110771, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35508134

RESUMO

We performed a comparative analysis of human and 12 non-human primates to identify sequence variations in known cancer genes. We identified 395 human-specific fixed non-silent substitutions that emerged during evolution of human. Using bioinformatics analyses for functional consequences, we identified a number of substitutions that are predicted to alter protein function; one of these mutations is located at the most evolutionarily conserved domain of human BRCA2.


Assuntos
Pan troglodytes , Primatas , Animais , Proteína BRCA2/genética , Evolução Molecular , Humanos , Mutação/genética , Pan troglodytes/genética , Proteínas/metabolismo
9.
Clin Cancer Res ; 27(5): 1516-1525, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33323400

RESUMO

PURPOSE: Melanoma is a biologically heterogeneous disease composed of distinct clinicopathologic subtypes that frequently resist treatment. To explore the evolution of treatment resistance and metastasis, we used a combination of temporal and multilesional tumor sampling in conjunction with whole-exome sequencing of 110 tumors collected from 7 patients with cutaneous (n = 3), uveal (n = 2), and acral (n = 2) melanoma subtypes. EXPERIMENTAL DESIGN: Primary tumors, metastases collected longitudinally, and autopsy tissues were interrogated. All but 1 patient died because of melanoma progression. RESULTS: For each patient, we generated phylogenies and quantified the extent of genetic diversity among tumors, specifically among putative somatic alterations affecting therapeutic resistance. CONCLUSIONS: In 4 patients who received immunotherapy, we found 1-3 putative acquired and intrinsic resistance mechanisms coexisting in the same patient, including mechanisms that were shared by all tumors within each patient, suggesting that future therapies directed at overcoming intrinsic resistance mechanisms may be broadly effective.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Evolução Molecular , Imunoterapia/métodos , Melanoma/patologia , Mutação , Neoplasias Cutâneas/patologia , Neoplasias Uveais/patologia , Biomarcadores Tumorais , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/imunologia , Prognóstico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/genética , Neoplasias Uveais/imunologia
10.
Nat Commun ; 11(1): 3617, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680998

RESUMO

Multiple myeloma (MM) progression is characterized by the seeding of cancer cells in different anatomic sites. To characterize this evolutionary process, we interrogated, by whole genome sequencing, 25 samples collected at autopsy from 4 patients with relapsed MM and an additional set of 125 whole exomes collected from 51 patients. Mutational signatures analysis showed how cytotoxic agents introduce hundreds of unique mutations in each surviving cancer cell, detectable by bulk sequencing only in cases of clonal expansion of a single cancer cell bearing the mutational signature. Thus, a unique, single-cell genomic barcode can link chemotherapy exposure to a discrete time window in a patient's life. We leveraged this concept to show that MM systemic seeding is accelerated at relapse and appears to be driven by the survival and subsequent expansion of a single myeloma cell following treatment with high-dose melphalan therapy and autologous stem cell transplant.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Evolução Clonal/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Mieloma Múltiplo/patologia , Recidiva Local de Neoplasia/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Progressão da Doença , Relação Dose-Resposta a Droga , Humanos , Masculino , Melfalan/administração & dosagem , Melfalan/efeitos adversos , Pessoa de Meia-Idade , Mieloma Múltiplo/diagnóstico por imagem , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Mutação/efeitos dos fármacos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/terapia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Análise de Célula Única , Análise Espaço-Temporal , Transplante Autólogo/efeitos adversos , Sequenciamento Completo do Genoma
11.
Cancer Discov ; 10(6): 792-805, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32193223

RESUMO

Surgery is the only curative option for stage I/II pancreatic cancer; nonetheless, most patients will experience a recurrence after surgery and die of their disease. To identify novel opportunities for management of recurrent pancreatic cancer, we performed whole-exome or targeted sequencing of 10 resected primary cancers and matched intrapancreatic recurrences or distant metastases. We identified that recurrent disease after adjuvant or first-line platinum therapy corresponds to an increased mutational burden. Recurrent disease is enriched for genetic alterations predicted to activate MAPK/ERK and PI3K-AKT signaling and develops from a monophyletic or polyphyletic origin. Treatment-induced genetic bottlenecks lead to a modified genetic landscape and subclonal heterogeneity for driver gene alterations in part due to intermetastatic seeding. In 1 patient what was believed to be recurrent disease was an independent (second) primary tumor. These findings suggest routine post-treatment sampling may have value in the management of recurrent pancreatic cancer. SIGNIFICANCE: The biological features or clinical vulnerabilities of recurrent pancreatic cancer after pancreaticoduodenectomy are unknown. Using whole-exome sequencing we find that recurrent disease has a distinct genomic landscape, intermetastatic genetic heterogeneity, diverse clonal origins, and higher mutational burden than found for treatment-naïve disease.See related commentary by Bednar and Pasca di Magliano, p. 762.This article is highlighted in the In This Issue feature, p. 747.


Assuntos
Carcinoma Ductal Pancreático/genética , Metástase Neoplásica/genética , Recidiva Local de Neoplasia/genética , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/secundário , Evolução Molecular , Humanos , Recidiva Local de Neoplasia/patologia , Neoplasias Pancreáticas/patologia , Sequenciamento do Exoma
12.
Nat Cancer ; 1(1): 59-74, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-35118421

RESUMO

Pancreatic cancer expression profiles largely reflect a classical or basal-like phenotype. The extent to which these profiles vary within a patient is unknown. We integrated evolutionary analysis and expression profiling in multiregion-sampled metastatic pancreatic cancers, finding that squamous features are the histologic correlate of an RNA-seq-defined basal-like subtype. In patients with coexisting basal and squamous and classical and glandular morphology, phylogenetic studies revealed that squamous morphology represented a subclonal population in an otherwise classical and glandular tumor. Cancers with squamous features were significantly more likely to have clonal mutations in chromatin modifiers, intercellular heterogeneity for MYC amplification and entosis. These data provide a unifying paradigm for integrating basal-type expression profiles, squamous histology and somatic mutations in chromatin modifier genes in the context of clonal evolution of pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Carcinoma de Células Escamosas , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Carcinoma de Células Escamosas/genética , Cromatina , Humanos , Neoplasias Pancreáticas/genética , Filogenia , Neoplasias Pancreáticas
13.
Nat Commun ; 10(1): 5435, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31780749

RESUMO

The KPC mouse model, driven by the Kras and Trp53 transgenes, is well regarded for faithful recapitulation of human pancreatic cancer biology. However, the extent that this model recapitulates the subclonal evolution of this tumor type is unknown. Here we report evidence of continuing subclonal evolution after tumor initiation that largely reflect copy number alterations that target cellular processes of established significance in human pancreatic cancer. The evolutionary trajectories of the mouse tumors show both linear and branching patterns as well as clonal mixing. We propose the KPC model and derivatives have unexplored utility as a functional system to model the mechanisms and modifiers of tumor evolution.


Assuntos
Adenocarcinoma/genética , Neoplasias Pancreáticas/genética , Animais , Evolução Clonal/genética , Variações do Número de Cópias de DNA/genética , Modelos Animais de Doenças , Evolução Molecular , Camundongos , Camundongos Transgênicos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Proteína Supressora de Tumor p53/genética
14.
Nat Rev Cancer ; 19(11): 639-650, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31455892

RESUMO

Genetic intratumoural heterogeneity is a natural consequence of imperfect DNA replication. Any two randomly selected cells, whether normal or cancerous, are therefore genetically different. Here, we review the different forms of genetic heterogeneity in cancer and re-analyse the extent of genetic heterogeneity within seven types of untreated epithelial cancers, with particular regard to its clinical relevance. We find that the homogeneity of predicted functional mutations in driver genes is the rule rather than the exception. In primary tumours with multiple samples, 97% of driver-gene mutations in 38 patients were homogeneous. Moreover, among metastases from the same primary tumour, 100% of the driver mutations in 17 patients were homogeneous. With a single biopsy of a primary tumour in 14 patients, the likelihood of missing a functional driver-gene mutation that was present in all metastases was 2.6%. Furthermore, all functional driver-gene mutations detected in these 14 primary tumours were present among all their metastases. Finally, we found that individual metastatic lesions responded concordantly to targeted therapies in 91% of 44 patients. These analyses indicate that the cells within the primary tumours that gave rise to metastases are genetically homogeneous with respect to functional driver-gene mutations, and we suggest that future efforts to develop combination therapies have the potential to be curative.


Assuntos
Heterogeneidade Genética , Mutação , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Animais , Biópsia , Ensaios Clínicos como Assunto , Epigênese Genética , Humanos , Oncologia , Metástase Neoplásica
15.
Science ; 361(6406): 1033-1037, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30190408

RESUMO

Metastases are responsible for the majority of cancer-related deaths. Although genomic heterogeneity within primary tumors is associated with relapse, heterogeneity among treatment-naïve metastases has not been comprehensively assessed. We analyzed sequencing data for 76 untreated metastases from 20 patients and inferred cancer phylogenies for breast, colorectal, endometrial, gastric, lung, melanoma, pancreatic, and prostate cancers. We found that within individual patients, a large majority of driver gene mutations are common to all metastases. Further analysis revealed that the driver gene mutations that were not shared by all metastases are unlikely to have functional consequences. A mathematical model of tumor evolution and metastasis formation provides an explanation for the observed driver gene homogeneity. Thus, single biopsies capture most of the functionally important mutations in metastases and therefore provide essential information for therapeutic decision-making.


Assuntos
Heterogeneidade Genética , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Humanos , Modelos Teóricos , Mutação , Metástase Neoplásica/patologia , Neoplasias/patologia
16.
Nature ; 561(7722): 201-205, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30177826

RESUMO

Most adult carcinomas develop from noninvasive precursor lesions, a progression that is supported by genetic analysis. However, the evolutionary and genetic relationships among co-existing lesions are unclear. Here we analysed the somatic variants of pancreatic cancers and precursor lesions sampled from distinct regions of the same pancreas. After inferring evolutionary relationships, we found that the ancestral cell had initiated and clonally expanded to form one or more lesions, and that subsequent driver gene mutations eventually led to invasive pancreatic cancer. We estimate that this multi-step progression generally spans many years. These new data reframe the step-wise progression model of pancreatic cancer by illustrating that independent, high-grade pancreatic precursor lesions observed in a single pancreas often represent a single neoplasm that has colonized the ductal system, accumulating spatial and genetic divergence over time.


Assuntos
Ductos Pancreáticos/patologia , Lesões Pré-Cancerosas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem da Célula/genética , Progressão da Doença , Evolução Molecular , Humanos , Mutação INDEL/genética , Modelos Biológicos , Mutagênese , Invasividade Neoplásica , Ductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Polimorfismo de Nucleotídeo Único/genética , Lesões Pré-Cancerosas/genética , Fatores de Tempo , Sequenciamento do Exoma
17.
Artigo em Inglês | MEDLINE | ID: mdl-28679692

RESUMO

We describe an 85-yr-old male of Ashkenazi Jewish descent with biopsy-proven locally advanced pancreatic ductal adenocarcinoma (PDA). The patient underwent a modified course of gemcitabine and stereotactic body radiation therapy and survived for 42 mo with a stable pancreatic head mass and no evidence of metastatic disease before death due to complications from a stroke. Whole-exome sequencing of his tumor revealed a simple genome landscape with no evidence of mutations, copy-number changes, or structural alterations in genes most commonly associated with PDA (i.e., KRAS, CDKN2A, TP53, or SMAD4). An analysis of his germline DNA revealed no pathogenic variants of significance. Whole-exome and whole-genome sequencing identified a somatic mutation of RNF213 and an inversion/deletion of CTNNA2 as the genetic basis of his PDA. Although PDA is classically characterized by a predictable set of mutations, these data suggest that alternate genetic paths to PDA may exist, which can be associated with a more indolent clinical course.


Assuntos
Adenosina Trifosfatases/genética , Carcinoma Ductal Pancreático/genética , Ubiquitina-Proteína Ligases/genética , alfa Catenina/genética , Adenocarcinoma/genética , Adenosina Trifosfatases/metabolismo , Idoso de 80 Anos ou mais , Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Exoma , Genômica , Humanos , Mutação INDEL/genética , Mutação , Pâncreas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Ubiquitina-Proteína Ligases/metabolismo , Sequenciamento do Exoma , alfa Catenina/metabolismo , Gencitabina , Neoplasias Pancreáticas
18.
Oncotarget ; 8(26): 41792-41805, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28611298

RESUMO

Cancer is an evolutionary disease, and there is increasing interest in applying tools from evolutionary biology to understand cancer progression. Restriction-site associated DNA sequencing (RADseq) was developed for the field of evolutionary genetics to study adaptation and identify evolutionary relationships among populations. Here we apply RADseq to study tumor evolution, which allows for unbiased sampling of any desired frequency of the genome, overcoming the selection bias and cost limitations inherent to exome or whole-genome sequencing. We apply RADseq to both human pancreatic cancer and zebrafish melanoma samples. Using either a low-frequency (SbfI, 0.4% of the genome) or high-frequency (NsiI, 6-9% of the genome) cutter, we successfully identify single nucleotide substitutions and copy number alterations in tumors, which can be augmented by performing RADseq on sublineages within the tumor. We are able to infer phylogenetic relationships between primary tumors and metastases. These same methods can be used to identify somatic mosaicism in seemingly normal, non-cancerous tissues. Evolutionary studies of cancer that focus on rates of tumor evolution and evolutionary relationships among tumor lineages will benefit from the flexibility and efficiency of restriction-site associated DNA sequencing.


Assuntos
Predisposição Genética para Doença , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias/genética , Neoplasias/patologia , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Progressão da Doença , Estudos de Associação Genética , Genômica/métodos , Humanos , Mosaicismo , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Sequenciamento do Exoma , Sequenciamento Completo do Genoma , Peixe-Zebra
19.
Oncotarget ; 8(26): 42487-42494, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28476018

RESUMO

PURPOSE: Anastomotic recurrences (AR) occur in 2-10% of colorectal carcinoma cases after resection of primary tumor (PT). Currently, there are no molecular data investigating their genetic profile and multiple theories exist about their pathogenesis. The aim of our study was to compare the genomic profile of AR to that of the patients' corresponding matched PT and, when available, to a distant metastasis (DM). EXPERIMENTAL DESIGN: Thirty-six tumors from 14 patients were genotyped using a capture-based, next-generation assay to define the mutational status of 341 cancer-associated genes. All patients had R0 resection of their PT and AR occurred 1.1-7.0 years following PT resection. A DM or a second AR was analyzed in 8 patients. All tumors were microsatellite stable except in one patient with Lynch syndrome. RESULTS: A total of 254 somatic mutations were detected including 138 mutations in the microsatellite stable (MSS) cases. The most commonly mutated genes were APC, KRAS, TP53, PIK3CA, ATM and PIK3R1. In all patients with MSS tumors the AR and PT shared between 50-100% of mutations, including mutations in key driver genes, consistent with these tumors being clonally related. Genetic events private to DM were not detected in AR and phylogenetic analysis showed that ARs were more closely related to PT than DM. In the Lynch syndrome patient the PT and AR showed distinct somatic mutations consistent with independent primaries. CONCLUSIONS: ARs are clonally related to PT in sporadic colorectal carcinomas and do not appear to represent seeding of the anastomotic site by distant metastases.


Assuntos
Evolução Clonal , Neoplasias Colorretais/patologia , Idoso , Biomarcadores Tumorais , Evolução Clonal/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/cirurgia , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Taxa de Mutação , Metástase Neoplásica , Recidiva Local de Neoplasia , Estadiamento de Neoplasias
20.
Nat Commun ; 8: 14114, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28139641

RESUMO

Reconstructing the evolutionary history of metastases is critical for understanding their basic biological principles and has profound clinical implications. Genome-wide sequencing data has enabled modern phylogenomic methods to accurately dissect subclones and their phylogenies from noisy and impure bulk tumour samples at unprecedented depth. However, existing methods are not designed to infer metastatic seeding patterns. Here we develop a tool, called Treeomics, to reconstruct the phylogeny of metastases and map subclones to their anatomic locations. Treeomics infers comprehensive seeding patterns for pancreatic, ovarian, and prostate cancers. Moreover, Treeomics correctly disambiguates true seeding patterns from sequencing artifacts; 7% of variants were misclassified by conventional statistical methods. These artifacts can skew phylogenies by creating illusory tumour heterogeneity among distinct samples. In silico benchmarking on simulated tumour phylogenies across a wide range of sample purities (15-95%) and sequencing depths (25-800 × ) demonstrates the accuracy of Treeomics compared with existing methods.


Assuntos
DNA de Neoplasias/genética , Neoplasias Ovarianas/genética , Neoplasias Pancreáticas/genética , Neoplasias da Próstata/genética , Proteômica/métodos , Teorema de Bayes , Benchmarking , DNA de Neoplasias/metabolismo , Feminino , Heterogeneidade Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mutação , Metástase Neoplásica , Neoplasias Ovarianas/classificação , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/patologia , Neoplasias Pancreáticas/classificação , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patologia , Filogenia , Neoplasias da Próstata/classificação , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...