Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0298237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635689

RESUMO

Fungi are among key actors in the biogeochemical processes occurring in mangrove ecosystems. In this study, we investigated the changes of fungal communities in selected mangrove species by exploring differences in diversity, structure and the degree of ecological rearrangement occurring within the rhizospheres of four mangrove species (Sonneratia alba, Rhizophora mucronata, Ceriops tagal and Avicennia marina) at Gazi Bay and Mida Creek in Kenya. Alpha diversity investigation revealed that there were no significant differences in species diversity between the same mangrove species in the different sites. Rather, significant differences were observed in fungal richness for some of the mangrove species. Chemical parameters of the mangrove sediment significantly correlated with fungal alpha diversity and inversely with richness. The fungal community structure was significantly differentiated by mangrove species, geographical location and chemical parameters. Taxonomic analysis revealed that 96% of the amplicon sequence variants belonged to the Phylum Ascomycota, followed by Basidiomycota (3%). Predictive FUNGuild and co-occurrence network analysis revealed that the fungal communities in Gazi Bay were metabolically more diverse compared to those of Mida Creek. Overall, our results demonstrate that anthropogenic activities influenced fungal richness, community assembly and their potential ecological functions in the mangrove ecosystems investigated.


Assuntos
Ecossistema , Micobioma , Rizosfera , Quênia , Baías
2.
J Toxicol ; 2022: 2397767, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242183

RESUMO

Cereals play an important role in global food security. Data from the UN Food and Agriculture Organization projects increased consumption of cereals from 2.6 billion tonnes in 2017 to approximately 2.9 billion tonnes by 2027. However, cereals are prone to contamination by toxigenic fungi, which lead to mycotoxicosis. The current methods for mycotoxin control involve the use of chemical preservatives. However, there are concerns about the use of chemicals in food preservation due to their effects on the health, nutritional quality, and organoleptic properties of food. Therefore, alternative methods are needed that are affordable and simple to use. The fermentation technique is based on the use of microorganisms mainly to impart desirable sensory properties and shelf-life extension. The lactic acid bacteria (LAB) are generally regarded as safe (GRAS) due to their long history of application in food fermentation systems and ability to produce antimicrobial compounds (hydroxyl fatty acids, organic acids, phenyllactic acid, hydrogen peroxide, bacteriocins, and carbon dioxide) with a broad range of antifungal activity. Hence, LAB can inhibit the growth of mycotoxin-producing fungi, thereby preventing the production of mycotoxins. Fermentation is also an efficient technique for improving nutrient bioavailability and other functional properties of cereal-based products. This review seeks to provide evidence of the potential of LAB from African fermented cereal-based products as potential biological agents against mycotoxin-producing fungi.

3.
PLoS One ; 16(3): e0248485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33755699

RESUMO

Prokaryotic communities play key roles in biogeochemical transformation and cycling of nutrients in the productive mangrove ecosystem. In this study, the vertical distribution of rhizosphere bacteria was evaluated by profiling the bacterial diversity and community structure in the rhizospheres of four mangrove species (Sonneratia alba, Rhizophora mucronata, Ceriops tagal and Avicennia marina) from Mida Creek and Gazi Bay, Kenya, using DNA-metabarcoding. Alpha diversity was not significantly different between sites, but, significantly higher in the rhizospheres of S. alba and R. mucronata in Gazi Bay than in Mida Creek. Chemical parameters of the mangrove sediments significantly correlated inversely with alpha diversity metrics. The bacterial community structure was significantly differentiated by geographical location, mangrove species and sampling depth, however, differences in mangrove species and sediment chemical parameters explained more the variation in bacterial community structure. Proteobacteria (mainly Deltaproteobacteria and Gammaproteobacteria) was the dominant phylum while the families Desulfobacteraceae, Pirellulaceae and Syntrophobacteraceae were dominant in both study sites and across all mangrove species. Constrained redundancy analysis indicated that calcium, potassium, magnesium, electrical conductivity, pH, nitrogen, sodium, carbon and salinity contributed significantly to the species-environment relationship. Predicted functional profiling using PICRUSt2 revealed that pathways for sulfur and carbon metabolism were significantly enriched in Gazi Bay than Mida Creek. Overall, the results indicate that bacterial community composition and their potential function are influenced by mangrove species and a fluctuating influx of nutrients in the mangrove ecosystems of Gazi Bay and Mida Creek.


Assuntos
Baías/microbiologia , Metagenoma , Proteobactérias/classificação , Rizosfera , Áreas Alagadas , Ecossistema , Quênia
4.
mSystems ; 5(5)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082281

RESUMO

Mangrove ecosystems provide important ecological benefits and ecosystem services, including carbon storage and coastline stabilization, but they also suffer great anthropogenic pressures. Microorganisms associated with mangrove sediments and the rhizosphere play key roles in this ecosystem and make essential contributions to its productivity and carbon budget. Understanding this nexus and moving from descriptive studies of microbial taxonomy to hypothesis-driven field and lab studies will facilitate a mechanistic understanding of mangrove ecosystem interaction webs and open opportunities for microorganism-mediated approaches to mangrove protection and rehabilitation. Such an effort calls for a multidisciplinary and collaborative approach, involving chemists, ecologists, evolutionary biologists, microbiologists, oceanographers, plant scientists, conservation biologists, and stakeholders, and it requires standardized methods to support reproducible experiments. Here, we outline the Mangrove Microbiome Initiative, which is focused around three urgent priorities and three approaches for advancing mangrove microbiome research.

5.
Springerplus ; 4: 471, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26355944

RESUMO

Termites constitute part of diverse and economically important termite fauna in Africa, but information on gut microbiota and their associated soil microbiome is still inadequate. In this study, we assessed and compared the bacterial diversity and community structure between termites' gut, their mounds and surrounding soil using the 454 pyrosequencing-based analysis of 16S rRNA gene sequences. A wood-feeder termite (Microcerotermes sp.), three fungus-cultivating termites (Macrotermes michaelseni, Odontotermes sp. and Microtermes sp.), their associated mounds and corresponding savannah soil samples were analyzed. The pH of the gut homogenates and soil physico-chemical properties were determined. The results indicated significant difference in bacterial community composition and structure between the gut and corresponding soil samples. Soil samples (Chao1 index ranged from 1359 to 2619) had higher species richness than gut samples (Chao1 index ranged from 461 to 1527). The bacterial composition and community structure in the gut of Macrotermes michaelseni and Odontotermes sp. were almost identical but different from that of Microtermes and Microcerotermes species, which had unique community structures. The most predominant bacterial phyla in the gut were Bacteroidetes (40-58 %), Spirochaetes (10-70 %), Firmicutes (17-27 %) and Fibrobacteres (13 %) while in the soil samples were Acidobacteria (28-45 %), Actinobacteria (20-40 %) and Proteobacteria (18-24 %). Some termite gut-specific bacterial lineages belonging to the genera Dysgonomonas, Parabacteroides, Paludibacter, Tannerella, Alistipes, BCf9-17 termite group and Termite Treponema cluster were observed. The results not only demonstrated a high level of bacterial diversity in the gut and surrounding soil environments, but also presence of distinct bacterial communities that are yet to be cultivated. Therefore, combined efforts using both culture and culture-independent methods are suggested to comprehensively characterize the bacterial species and their specific roles in these environments.

6.
Antonie Van Leeuwenhoek ; 104(5): 869-83, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23942613

RESUMO

The interaction between termites and their gut symbionts has continued to attract the curiosity of researchers over time. The aim of this study was to characterize and compare the bacterial diversity and community structure in the guts of three termites (Odontotermes somaliensis, Odontotermes sp. and Microtermes sp.) using 16S rRNA gene sequencing of clone libraries. Clone libraries were screened by restriction fragment length polymorphism and representative clones from O. somaliensis (100 out of 330 clones), Odontotermes sp. (100 out of 359 clones) and Microtermes sp. (96 out 336 clones) were sequenced. Phylogenetic analysis indicated seven bacterial phyla were represented: Bacteroidetes, Spirochaetes, Firmicutes, Proteobacteria, Synergistetes, Planctomycetes and Actinobacteria. Sequences representing the phylum Bacteroidetes (>60 %) were the most abundant group in Odontotermes while those of Spirochaetes (29 %) and Firmicutes (23 %) were the abundant groups in Microtermes. The gut bacterial community structure within the two Odontotermes species investigated here was almost identical at the phylum level, but the Microtermes sp. had a unique bacterial community structure. Bacterial diversity was higher in Odontotermes than in Microtermes. The affiliation and clustering of the sequences, often with those from other termites' guts, indicate a majority of the gut bacteria are autochthonous having mutualistic relationships with their hosts. The findings underscore the presence of termite-specific bacterial lineages, the majority of which are still uncultured.


Assuntos
Bactérias/classificação , Bactérias/genética , Biodiversidade , Isópteros/microbiologia , Animais , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Trato Gastrointestinal/microbiologia , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
PLoS One ; 8(2): e56464, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437139

RESUMO

BACKGROUND: Fungus-cultivating termites make use of an obligate mutualism with fungi from the genus Termitomyces, which are acquired through either vertical transmission via reproductive alates or horizontally transmitted during the formation of new mounds. Termitomyces taxonomy, and thus estimating diversity and host specificity of these fungi, is challenging because fruiting bodies are rarely found. Molecular techniques can be applied but need not necessarily yield the same outcome than morphological identification. METHODOLOGY: Culture-dependent and culture-independent methods were used to comprehensively assess host specificity and gut fungal diversity. Termites were identified using mitochondrial cytochrome oxidase II (COII) genes. Twenty-three Termitomyces cultures were isolated from fungal combs. Internal transcribed spacer (ITS) clone libraries were constructed from termite guts. Presence of Termitomyces was confirmed using specific and universal primers. Termitomyces species boundaries were estimated by cross-comparison of macromorphological and sequence features, and ITS clustering parameters accordingly optimized. The overall trends in coverage of Termitomyces diversity and host associations were estimated using Genbank data. RESULTS AND CONCLUSION: Results indicate a monoculture of Termitomyces in the guts as well as the isolation sources (fungal combs). However, cases of more than one Termitomyces strains per mound were observed since mounds can contain different termite colonies. The newly found cultures, as well as the clustering analysis of GenBank data indicate that there are on average between one and two host genera per Termitomyces species. Saturation does not appear to have been reached, neither for the total number of known Termitomyces species nor for the number of Termitomyces species per host taxon, nor for the number of known hosts per Termitomyces species. Considering the rarity of Termitomyces fruiting bodies, it is suggested to base the future taxonomy of the group mainly on well-characterized and publicly accessible cultures.


Assuntos
DNA Espaçador Ribossômico/genética , Isópteros/genética , Simbiose/genética , Termitomyces/genética , Termitomyces/isolamento & purificação , Animais , DNA Fúngico/genética , Variação Genética , Isópteros/microbiologia , Isópteros/fisiologia , Filogenia , Termitomyces/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...