Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38792170

RESUMO

JUK-8 ([Zn(oba)(pip)]n, oba2- = 4,4'-oxybis(benzenedicarboxylate), pip = 4-pyridyl-functionalized benzene-1,3-dicarbohydrazide) is a hydrolytically stable flexible metal-organic framework. Owing to its unusual adsorptive properties, JUK-8 can be considered as a promising sensing material for construction of detectors of volatile organic compounds (VOCs) in air. Quasi-equilibrated temperature-programmed desorption and adsorption (QE-TPDA) is a versatile method dedicated to characterization of porous materials. In this work, QE-TPDA was employed to study co-adsorption of water and selected alcohols in JUK-8. For the first time an infrared detector sensitive to organic compounds was used in the QE-TPDA measurements, allowing the study of the influence of water vapor on sorption of VOCs. The QE-TPDA profiles of the studied alcohols, exhibiting two desorption maxima and two adsorption minima, are consistent with the standard sorption isotherms, revealing a two-step adsorption-desorption mechanism. The profiles recorded in the presence of water are noticeably changed in different ways for different alcohols. While at low relative humidity (RH) (ca. 20%) the low temperature adsorption states of ethanol and 1-propanol were only slightly destabilized, for 2-propanol almost complete suppression of adsorption was observed. The results found for moderate RH levels (ca. 50%) indicated that the opening of the JUK-8 structure, responsible for its breathing behavior, was followed by the filling of the just generated pores with a water-alcohol mixture.

2.
J Phys Chem Lett ; 14(24): 5618-5623, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37310235

RESUMO

This work aimed to investigate the adsorption of toluene in UiO-66 materials. Toluene is a volatile, aromatic organic molecule that is recognized as the main component of VOCs. These compounds are harmful to the environment as well as to living organisms. One of the materials that allows the capture of toluene is the UiO-66. A satisfactory representation of the calculated isotherm steep front and sorption capacity compared to the experiment was obtained by reducing the force field σ parameter by 5% and increasing ε by 5%. Average occupation profiles, which are projections of the positions of molecules during pressure increase, as well as RDFs, which are designed to determine the distance of the center of mass of the toluene molecule from organic linkers and metal clusters, respectively, made it possible to explain the mechanism of toluene adsorption on the UiO-66 material.

3.
Chemistry ; 28(29): e202200030, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35312101

RESUMO

In this work, adsorption properties of the UiO-66 metal-organic framework were investigated, with particular emphasis on the influence of structural defects. A series of UiO-66 samples were synthesized and characterized using a wide range of experimental techniques. Type I adsorption isotherms for low-temperature adsorption of N2 and Ar showed that micropore volume and specific surface area significantly increase with the number of defects. Adsorption of hexane isomers in UiO-66 was studied by means of quasi-equilibrated temperature-programmed desorption and adsorption (QE-TPDA) experimental and Monte Carlo simulation techniques. QE-TPDA profiles revealed that only defect-free UiO-66 exhibits distinct two adsorption states. This technique also yielded high-quality adsorption isobars that were successfully recreated using Grand-Canonical Monte Carlo molecular simulations, which, however, required refinement of the existing force fields. The calculations demonstrated the detailed mechanism of adsorption and separation of hexane isomers in the UiO-66 structure. The preferred tetrahedral cages provide suitable voids for bulky molecules, which is the reason for unusual "reverse" selectivity of UiO-66 towards di-branched alkanes. Interconnection of the tetrahedral cavities due to missing organic linkers greatly reduces the selectivity of the defected material.

4.
Commun Chem ; 5(1): 120, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36697947

RESUMO

Structural defects in metal-organic frameworks can be exploited to tune material properties. In the case of UiO-66 material, they may change its nature from hydrophobic to hydrophilic and therefore affect the mechanism of adsorption of polar and non-polar molecules. In this work, we focused on understanding this mechanism during adsorption of molecules with different dipole moments, using the standard volumetric adsorption measurements, IR spectroscopy, DFT + D calculations, and Monte Carlo calculations. Average occupation profiles showed that polar and nonpolar molecules change their preferences for adsorption sites. Hence, defects in the structure can be used to tune the adsorption properties of the MOF as well as to control the position of the adsorbates within the micropores of UiO-66.

5.
Chem Sci ; 12(26): 9176-9188, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34276948

RESUMO

While metal-organic frameworks (MOFs) are at the forefront of cutting-edge porous materials, extraordinary sorption properties can also be observed in Prussian Blue Analogs (PBAs) and related materials comprising extremely short bridging ligands. Herein, we present a bimetallic nonporous cyanide-bridged coordination polymer (CP) {[Mn(imH)]2[Mo(CN)8]} n (1Mn; imH = imidazole) that can efficiently and reversibly capture and release water molecules over tens of cycles without any fatigue despite being based on one of the shortest bridging ligands known - the cyanide. The sorption performance of {[Mn(imH)]2[Mo(CN)8]} n matches or even outperforms MOFs that are typically selected for water harvesting applications with perfect sorption reversibility and very low desorption temperatures. Water sorption in 1Mn is possible due to the breathing effect (accompanied by a dramatic cyanide-framework transformation) occurring in three well-defined steps between four different crystal phases studied structurally by X-ray diffraction structural analysis. Moreover, the capture of H2O by 1Mn switches the EPR signal intensity of the MnII centres, which has been demonstrated by in situ EPR measurements and enables monitoring of the hydration level of 1Mn by EPR. The sorption of water in 1Mn controls also its photomagnetic behavior at the cryogenic regime, thanks to the presence of the [MoIV(CN)8]4- photomagnetic chromophore in the structure. These observations demonstrate the extraordinary sorption potential of cyanide-bridged CPs and the possibility to merge it with the unique physical properties of this class of compounds arising from their bimetallic character (e.g. photomagnetism and long-range magnetic ordering).

6.
Chemistry ; 27(59): 14653-14659, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34314527

RESUMO

The rapidly rising level of carbon dioxide in the atmosphere resulting from human activity is one of the greatest environmental problems facing our civilization today. Most technologies are not yet sufficiently developed to move existing infrastructure to cleaner alternatives. Therefore, techniques for capturing carbon dioxide from emission sources may play a key role at the moment. The structure of the UiO-66 material not only meets the requirement of high stability in contact with water vapor but through the water pre-adsorbed in the pores, the selectivity of carbon dioxide adsorption is increased. We successfully applied the recently developed methodology for water adsorption modelling. It allowed to elucidate the influence of water on CO2 adsorption and study the mechanism of this effect. We showed that water is adsorbed in octahedral cage and stands for promotor for CO2 adsorption in less favorable space than tetrahedral cages. Water plays a role of a mediator of adsorption, what is a general idea of improving affinity of adsorbate. On the basis of pre-adsorption of methanol as another polar solvent, we have shown that the adsorption sites play a key role here, and not, as previously thought, only the interaction between the solvent and quadrupole carbon dioxide. Overall, we explained the mechanism of increased CO2 adsorption in the presence of water and methanol, as polar solvents, in the UiO-66 pores for a potential post-combustion carbon dioxide capture application.


Assuntos
Dióxido de Carbono , Água , Adsorção , Humanos , Metanol , Solventes
7.
J Chem Educ ; 98(3): 935-940, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33814599

RESUMO

Heterogeneous catalysis plays an important role in many chemical reactions, especially those applied in industrial processes, and therefore, its theoretical foundations are introduced not only to students majoring in chemical engineering or catalysis but also as part of general chemistry courses. The consideration of catalytic activity of various solids and mechanisms of catalytic reactions requires the introduction of the concept of an active site, which together with the catalyst specific surface area are discussed as key parameters controlling the reaction rate. There are many known demonstrations of heterogeneous catalysis phenomena that can be performed live in a lecture hall, but all of them focus only on the general idea of catalytic processes and are not suitable for quantitative analysis. Therefore, herein we present a simple demonstration of the influence of the specific surface area of a catalyst on the rate of a catalytic reaction. This demonstration is based on a model reaction of hydrogen peroxide decomposition catalyzed by cobalt spinel (Co3O4) calcined at various temperatures. The differences in reaction rates can be monitored visually, and the obtained data can be used directly for a simple kinetic analysis, including comparison of numerical values of the reaction rate constants.

8.
Chemistry ; 26(49): 11187-11198, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32227503

RESUMO

Discrete molecular species that can perform certain functions in response to multiple external stimuli constitute a special class of multifunctional molecular materials called smart molecules. Herein, cyanido-bridged coordination clusters {[FeII (2-pyrpy)2 ]4 [MIV (CN)8 ]2 }⋅4 MeOH⋅6 H2 O (M=Mo (1 solv), M=W (2 solv) and 2-pyrpy=2-(1-pyrazolyl)pyridine are presented, which show persistent solvent driven single-crystal-to-single-crystal transformations upon sorption/desorption of water and methanol molecules. Three full desolvation-resolvation cycles with the concomitant change of the host molecules do not damage the single crystals. More importantly, the Fe4 M2 molecules constitute a unique example where the presence of the guests directly affects the pressure-induced thermal spin crossover (SCO) phenomenon occurring at the FeII centres. The hydrated phases show a partial SCO with approximately two out-of-four FeII centres undergoing a gradual thermal SCO at 1 GPa, while in the anhydrous form the pressure-induced SCO effect is almost quenched with only 15 % of the FeII centres undergoing high-spin to low-spin transition at 1 GPa.

9.
Chemphyschem ; 19(24): 3364-3371, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30457696

RESUMO

Adsorption of cyclohexane in pure silica zeolites was studied experimentally and by molecular simulations. Based on the adsorption isobars obtained from the quasi-equilibrated temperature adsorption and desorption (QE-TPDA) measurements and reported adsorption isotherms for high-silica zeolites Y, ZSM-5, and ZSM-11 we refined Lennard-Jones parameters for guest-host interactions available in the literature. Adsorption of cyclohexane from equimolar mixture of twisted-boat and chair conformations has been screened in 171 pure silica zeolitic structures using grand canonical Monte Carlo simulations. Almost 20 frameworks showing extraordinary preference for adsorption of the chair conformation over the twisted boat one or vice versa were found. This selectivity was attributed to the geometry of channels and cavities present in the pore structures, as all t-boat selective structures possess channels or cavities of 8.3-9.1 Å. We also differentiated ways of chair-selectivity depending on the size and shape of the channels or cavities and also on the arrangement of the guest molecules in the pores.

10.
Inorg Chem ; 57(6): 3287-3296, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29498839

RESUMO

A new microporous cadmium metal-organic framework was synthesized both mechanochemically and in solution by using a sulfonyl-functionalized dicarboxylate linker and an acylhydrazone colinker. The three-dimensional framework is highly stable upon heating to 300 °C as well as in aqueous solutions at elevated temperatures or acidic conditions. The thermally activated material exhibits steep water vapor uptake at low relative pressures at 298 K and excellent recyclability up to 260 °C as confirmed by both quasi-equilibrated temperature-programmed desorption and adsorption (QE-TPDA) method as well as adsorption isotherm measurements. Reversible isotherms and hysteretic isobars recorded for the desorption-adsorption cycles indicate the maximum uptake of 0.19 g/g (at 298 K, up to p/p0 = 1) or 0.18 g/g (at 1 bar, within 295-375 K range), respectively. The experimental isosteric heat of adsorption (48.9 kJ/mol) indicates noncoordinative interactions of water molecules with the framework. Exchange of the solvent molecules in the as-made material with water, performed in the single-crystal to single-crystal manner, allows direct comparison of both X-ray crystal structures. The single-crystal X-ray diffraction for the water-loaded framework demonstrates the orientation of water clusters in the framework cavities and reveals their strong hydrogen bonding with sulfonyl, acyl, and carboxylate groups of the two linkers. The grand canonical Monte Carlo (GCMC) simulations of H2O adsorption corroborate the experimental findings and reveal preferable locations of guest molecules in the framework voids at various pressures. Additionally, both experimental and GCMC simulation insights into the adsorption of CO2 (at 195 K) on the activated framework are presented.

11.
Dalton Trans ; 47(9): 3029-3037, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29485158

RESUMO

Layered zeolite materials with FER layer topology can produce various condensed and expanded structures including zeolite frameworks, FER and CDO, their interlayer expanded forms (IEZ), and organic-intercalated and pillared derivatives. This work concerns pillaring of the surfactant-swollen derivative with a gallery height of ca. 2.5 nm between layers by treatment with tetraethylorthosilicate (TEOS) at room and elevated temperatures. The materials obtained at 100 °C and higher showed unusual properties including 2 nm pores on the micro/mesoporous border and disordered layer packing indicated by the absence of distinct low angle interlayer peaks at d-spacing >3 nm (∼3° 2θ Cu Kα radiation) in the X-ray diffraction pattern (XRD). TEOS treatment at room temperature produced a pillared molecular sieve with the expected mesoporous characteristics, namely a pore size of around 3 nm and a high intensity low angle (001) peak at 2.3° 2θ, and a d-spacing of 3.8 nm, in the XRD. The characterization aiming to elucidate the nature of the obtained unusual products included gas adsorption isotherms, aberration corrected (Cs-corrected) Scanning Transmission Electron Microscopy (STEM) studies and 29Si solid state NMR. BET surface area values decreased with the temperature of TEOS treatment from approximately 1200 m2 g-1 to ∼900 and 600 m2 g-1, at room temperature, 100 °C, and 120 °C, respectively. The 29Si solid state NMR revealed the presence of both Q3 ((SiO)3SiOX, X = H or minus charge) and Q4 ((SiO)4Si) centers giving separated signals up to the pillaring step. After pillaring at 100 °C and calcination, the nominal intensity ratios Q4 : Q3 were 2.17 and 2.61 but the signals were merged into one broad peak indicating the structural heterogeneity of Si-O coordination. The microscopy showed the presence of FER layers in the samples but the overall structure and composition were not well-defined. The observed unusual disorganization and possible partial degradation of layers during pillaring may result from the combination of high temperature, alkalinity (surfactant hydroxide) and siliceous composition of the layers. The obtained pillared products are of interest for the preparation of larger pore catalysts and sorbents or controlled drug delivery.

12.
Chem Soc Rev ; 45(12): 3400-38, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-26489452

RESUMO

Many chemical compositions produce layered solids consisting of extended sheets with thickness not greater than a few nanometers. The layers are weakly bonded together in a crystal and can be modified into various nanoarchitectures including porous hierarchical structures. Several classes of 2-dimensional (2D) materials have been extensively studied and developed because of their potential usefulness as catalysts and sorbents. They are discussed in this review with focus on clays, layered transition metal oxides, silicates, layered double hydroxides, metal(iv) phosphates and phosphonates, especially zirconium, and zeolites. Pillaring and delamination are the primary methods for structural modification and pore tailoring. The reported approaches are described and compared for the different classes of materials. The methods of characterization include identification by X-ray diffraction and microscopy, pore size analysis and activity assessment by IR spectroscopy and catalytic testing. The discovery of layered zeolites was a fundamental breakthrough that created unprecedented opportunities because of (i) inherent strong acid sites that make them very active catalytically, (ii) porosity through the layers and (iii) bridging of 2D and 3D structures. Approximately 16 different types of layered zeolite structures and modifications have been identified as distinct forms. It is also expected that many among the over 200 recognized zeolite frameworks can produce layered precursors. Additional advances enabled by 2D zeolites include synthesis of layered materials by design, hierarchical structures obtained by direct synthesis and top-down preparation of layered materials from 3D frameworks.

13.
Dalton Trans ; 43(27): 10574-83, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24756195

RESUMO

The pore characteristics of zeolite samples including two kinds of ZSM-5 crystals as a base case and the unique mono-layered MCM-56 in different structural forms have been studied by the new method QE-TPDA (quasi-equilibrated temperature-programmed desorption and adsorption) in comparison with the standard nitrogen adsorption. Both approaches produce consistent results in terms of micro- and meso-porous features as well as quantitative pore volume values. The benefits of QE-TPDA include fast data acquisition (hours) and small sample size (milligrams). It is very flexible in using various hydrocarbons as probe molecules, which may reveal additional details associated with pores, their internal environment and dimensions/shape of the sorbate molecules. Hence, QE-TPDA is a valuable complementary tool for porosity characterization of the ever increasing diversity of porous materials and their pore structures. This was demonstrated by the results for the desorption of nonane and 2,2-dimethyloctane (DMO). The latter showed an additional maximum in the intermediate temperature range (between 'micro-' and 'mesopore' regions) which could be attributed to adsorption in the subsurface micropores (i.e. the pore mouths) where DMO could be partially adsorbed with t-butyl groups remaining on the outside. This was also reflected in the discrepancy between apparent volumes of micro- and mesopores calculated from the nonane and DMO experiments. Pillared MCM-56 revealed visibly enhanced subsurface micropore adsorption compared to the parent (mono-layer MWW) and MCM-22 (multi-layered MWW) consistent with the expected increase in the content of external 12 ring surface cups.

14.
Dalton Trans ; 43(27): 10501-11, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24658596

RESUMO

The unilamellar form of zeolite MWW, MCM-56, which is obtained by direct hydrothermal synthesis has been studied with regard to acidity and porosity in its original and post-synthesis modified pillared and delaminated forms. The acidity measured by FTIR was found to be only slightly lower than the highly active 3-D MWW forms, MCM-22 and MCM-49. Pivalonitrile adsorption, which is a measure of spatial openness, showed 50% accessibility vs. <30% for MCM-22/49. It highlights the potential of MCM-56 as a layered material with increased access to acid sites because it does not entail laborious post-synthesis modification. Swelling, pillaring and delamination of MCM-56 are facile but result in a reduction in the number of Brønsted acid sites (BAS) while increasing accessibility to pivalonitrile. The delamination procedure involving sonication and acidification of the highly basic mother liquor produces the most visible increase in surface area and access to all BAS. The accompanying doubling of the solid yield and the decrease in absolute number of BAS suggest significant precipitation of dissolved silica generated during swelling and sonication in high pH medium. The viability of separating surfactant covered layers upon sonication with the consequence of exposing hydrophobic hydrocarbon tails to aqueous environment is addressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...