Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1219668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37555016

RESUMO

The non-coding 6S RNA is a master regulator of the cell cycle in bacteria which binds to the RNA polymerase-σ70 holoenzyme during the stationary phase to inhibit transcription from the primary σ factor. Inhibition is reversed upon outgrowth from the stationary phase by synthesis of small product RNA transcripts (pRNAs). 6S and its complex with a pRNA were structurally characterized using Small Angle X-ray Scattering. The 3D models of 6S and 6S:pRNA complex presented here, demonstrate that the fairly linear and extended structure of 6S undergoes a major conformational change upon binding to pRNA. In particular, 6S:pRNA complex formation is associated with a compaction of the overall 6S size and an expansion of its central domain. Our structural models are consistent with the hypothesis that the resultant particle has a shape and size incompatible with binding to RNA polymerase-σ70. Overall, by use of an optimized in vivo methodological approach, especially useful for structural studies, our study considerably improves our understanding of the structural basis of 6S regulation by offering a mechanistic glimpse of the 6S transcriptional control.

2.
Biochem J ; 477(22): 4383-4395, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33111951

RESUMO

A fragment screen of a library of 560 commercially available fragments using a kinetic assay identified a small molecule that increased the activity of the fungal glycoside hydrolase TrBgl2. An analogue by catalogue approach and detailed kinetic analysis identified improved compounds that behaved as nonessential activators with up to a 2-fold increase in maximum activation. The compounds did not activate the related bacterial glycoside hydrolase CcBglA demonstrating specificity. Interestingly, an analogue of the initial fragment inhibits both TrBgl2 and CcBglA, apparently through a mixed-model mechanism. Although it was not possible to determine crystal structures of activator binding to 55 kDa TrBgl2, solution NMR experiments demonstrated a specific binding site for the activator. A partial assignment of the NMR spectrum gave the identity of the amino acids at this site, allowing a model for TrBgl2 activation to be built. The activator binds at the entrance of the substrate-binding site, generating a productive conformation for the enzyme-substrate complex.


Assuntos
Ativadores de Enzimas/química , Proteínas Fúngicas/química , Hypocreales/química , beta-Glucosidase/química , Ressonância Magnética Nuclear Biomolecular
3.
Biomol NMR Assign ; 14(2): 269, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32654087

RESUMO

In the original publication of the article, the name of one of the authors is incorrect. The author's name is Eiso AB, but was modified to A. B. Eiso. The correct name is given in this Correction.

4.
Biomol NMR Assign ; 14(2): 265-268, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32562251

RESUMO

ß-glucosidases have received considerable attention due to their essential role in bioethanol production from lignocellulosic biomass. ß-glucosidase can hydrolyse cellobiose in cellulose degradation and its low activity has been considered as one of the main limiting steps in the process. Large-scale conversions of cellulose therefore require high enzyme concentration which increases the cost. ß-glucosidases with improved activity and thermostability are therefore of great commercial interest. The fungus Trichoderma reseei expresses thermostable cellulolytic enzymes which have been widely studied as attractive targets for industrial applications. Genetically modified ß-glucosidases from Trichoderma reseei have been recently commercialised. We have developed an approach in which screening of low molecular weight molecules (fragments) identifies compounds that increase enzyme activity and are currently characterizing fragment-based activators of TrBgl2. A structural analysis of the 55 kDa apo form of TrBgl2 revealed a classical (α/ß)8-TIM barrel fold. In the present study we present a partial assignment of backbone chemical shifts, along with those of the Ile (I)-Val (V)-Leu (L) methyl groups of TrBgl2. These data will be used to characterize the interaction of TrBgl2 with the small molecule activators.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Proteínas Fúngicas/análise , Hypocreales/enzimologia , Espectroscopia de Prótons por Ressonância Magnética , beta-Glucosidase/análise , Isótopos de Nitrogênio , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...