Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytotechnology ; 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33108565

RESUMO

Fusion of somatic cells to embryonic stem cells induces reprogramming of the somatic nucleus and can be used to study the effect of trans-acting factors from the pluripotent cell over the differentiated nucleus. However, fusion only occurs in a small fraction of the cells exposed to fusogenic conditions, hence the need for a protocol that produces high fusion rate with minimal cell damage, coupled with a method capable of identifying and selecting these rare events. Here, we describe a protocol to induce formation of bi-species mouse pluripotent/bovine somatic heterokaryons, as well as same-species homokaryons, using polyethylene glycol (PEG). To identify bi-species fusion products, heterokaryons were labeled using cell type-specific fluorescent antibodies and selected using imaging (Amnis ImageStream Mark II) and traditional (BD FACSAria I) flow cytometry. Heterokaryons selected with this method produced ES cell-like colonies in vitro. This procedure can be combined with downstream applications such as nucleic acid isolation for RT-PCR and RNA-Seq, and used as a tool to study somatic cell nuclear reprogramming.

2.
Vaccine ; 30(8): 1502-12, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22234268

RESUMO

Brucellosis is worldwide zoonoses affecting 500,000 people annually with no approved human vaccines available. Live attenuated Brucella abortus vaccine strain RB51 protects cattle through CD4 and CD8 T-cell mediated responses. However, limited information is known regarding how Brucella stimulate innate immunity. Although the most critical toll like receptors (TLRs) involved in the recognition of Brucella are TLR2, TLR4 and TLR9, it is important to identify the essential TLRs that induce DC activation/function in response to Brucella, to be able to upregulate both vaccine strain RB51-mediated protection, and clearance of pathogenic strain 2308. Furthermore, in spite of the importance of aerosol transmission of Brucella, no published studies have addressed the role of TLRs in the clearance of strain 2308 or strain RB51 from intranasally infected mice. Therefore, we used a (a) bone marrow derived dendritic cell model in TLRKO and control mice to assess the differential role of pathogenic and vaccine strains to induce DC activation and function in vitro, and (b) respiratory model in TLRKO and control mice to assess the critical roles for TLRs in clearance of strains in vivo. In support of the essential TLRs in clearance and protection, we performed challenge experiments to identify if these critical TLRs (as agonists) could enhance vaccine induced protection against pathogenic strain 2308 in a respiratory model. We determined: vaccine strain RB51 induced significant (p≤0.05) DC activation vs. strain 2308 which was not dependent on a specific TLR; strain RB51 induced TNF-α production was TLR2 and TLR9 dependent, and IL-12 production was TLR2 and TLR4 dependent; TLR4 and TLR2 were critical for clearance of vaccine and pathogenic Brucella strains respectively; and TLR2 (p<0.05), TLR4 (p<0.05) and TLR9 (p=0.075) agonists enhanced vaccine strain RB51-mediated protection against respiratory challenge with strain 2308 in the lung.


Assuntos
Brucella abortus/imunologia , Brucelose/imunologia , Células Dendríticas/imunologia , Pulmão/imunologia , Receptores Toll-Like/imunologia , Animais , Broncopneumonia/imunologia , Broncopneumonia/microbiologia , Brucelose/microbiologia , Células Cultivadas , Células Dendríticas/metabolismo , Feminino , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Receptores Toll-Like/metabolismo
3.
Vet Microbiol ; 147(1-2): 75-82, 2011 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-20594772

RESUMO

Brucella spp. are Gram-negative, coccobacillary, facultative intracellular pathogens. B. abortus strain 2308 is a pathogenic strain affecting cattle and humans. Rough B. abortus strain RB51, which lacks the O-side chain of lipopolysaccharide (LPS), is the live attenuated USDA approved vaccine for cattle in the United States. Strain RB51SOD, which overexpresses Cu-Zn superoxide dismutase (SOD), has been shown to confer better protection than strain RB51 in a murine model. Protection against brucellosis is mediated by a strong CD4+ Th(1) and CD8+ Tc(1) adaptive immune response. In order to stimulate a robust adaptive response, a solid innate immune response, including that mediated by dendritic cells, is essential. As dendritic cells (DCs) are highly susceptible to Brucella infection, it is possible that pathogenic strains could limit the innate and thereby adaptive immune response. By contrast, vaccine strains could limit or bolster the innate and subsequent adaptive immune response. Identifying how Brucella vaccines stimulate innate and adaptive immunity is critical for enhancing vaccine efficacy. The ability of rough vaccine strains RB51 and RB51SOD to stimulate DC function has not been characterized. We report that live rough vaccine strain RB51 induced significantly better (p ≤ 0.05) DC maturation and function compared to either strain RB51SOD or smooth virulent strain 2308, based on costimulatory marker expression and cytokine production.


Assuntos
Células da Medula Óssea/imunologia , Vacina contra Brucelose/imunologia , Brucella abortus/imunologia , Células Dendríticas/imunologia , Imunidade Inata/imunologia , Animais , Antígeno B7-2/imunologia , Células da Medula Óssea/microbiologia , Brucelose Bovina/imunologia , Antígenos CD40/imunologia , Bovinos , Células Dendríticas/microbiologia , Feminino , Regulação da Expressão Gênica/imunologia , Interleucina-12/imunologia , Complexo Principal de Histocompatibilidade/genética , Complexo Principal de Histocompatibilidade/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Fator de Necrose Tumoral alfa/imunologia , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...