Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208897

RESUMO

Raman spectroscopy and Raman mapping analysis, combined with density functional theory calculations were applied to the problem of differentiating similar clinker materials such as alite and belite. The Portland cement clinker 217 (further: clinker) was analysed using colocalised Raman mapping and atomic force microscopy mapping, which provided both spatial and chemical information simultaneously. The main constituents found in the clinker were alite, belite, portlandite, amorphous calcium carbonate, and gypsum. Since phonon bands of alite and belite greatly overlap, and their distinction is important for the hydration process during cement setting, we provided the calculated phonon density of states for alite Ca3SiO5 (Pc structure) and belite Ca2SiO4 (ß P21/n structure) here for the first time. Both calculated phonon densities have similar distribution of phonon modes, with a gap between 560 and 810 cm-1. A comparison of the calculated phonon frequencies for Ca3SiO5 and Ca2SiO4 shows that the lowest calculated phonon frequency of ß-Ca2SiO4 lies at 102 cm-1, while for Pc alite the lowest phonon frequency is predicted at 27 cm-1. Low frequency Raman spectroscopy could therefore be used for a clearer distinction of these two species in a clinker material.

2.
ACS Earth Space Chem ; 5(3): 436-448, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33842801

RESUMO

X-ray astronomy lacks high resolution spectra of interstellar dust analogues and molecules, severely hampering interstellar medium studies based on upcoming X-ray missions. Various theoretical approaches may be used to address this problem, but they must first be shown to reproduce reliable spectra compared to the experiment. In this work, we calculate the sulfur K edge X-ray absorption spectra of H2S, SO2, and OCS, whose spectra are already known from X-ray experiments and predict the X-ray spectrum of CS, which as far as we are aware has not been measured, thereby hampering its detection by X-ray telescopes. We chose these four molecules as the astrochemistry of sulfur is an unsolved problem and as the four molecules are already known to exist in space. We consider three types of methods for modeling the X-ray spectra: more accurate calculations with the algebraic-diagrammatic construction (ADC) and the CC2, CCSD, and CC3 coupled cluster (CC) approaches as well as more affordable ones with transition potential density functional theory (TP-DFT). A comparison of our computational results to previously reported experimental spectra shows that the core-valence separation (CVS) approaches CVS-ADC(2)-x and CVS-CC3 generally yield a good qualitative level of agreement with the experiment, suggesting that they can be used for interpreting measured spectra, while the TP-DFT method is not reliable for these molecules. However, quantitative agreement with the experiment is still outside the reach of the computational methods studied in this work.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25579800

RESUMO

Raman and infrared spectra of polycrystalline D,L-glycolic and L-(+) lactic acid are presented and assigned both by an ab initio calculation of normal modes of free conformers and by self-consistent-charge density-functional-theory computational program DFTB+. Temperature dependent Raman spectra from 295 K to 10 K reveal great stability of crystal lattices, since no soft modes and no band splittings that could be attributed to changes of the number of molecules per unit cell were observed. A semiempirical calculation with GULP program was used to estimate the strength of hydrogen bonds in crystals: in glycolic acid they have energies of -0.337 eV/mol, -0.329 eV/mol, -0.262 eV/mol and -0.242 eV/mol, while in lactic acid two hydrogen bonds have energies of -0.283 eV/mol and -0.202 eV/mol.


Assuntos
Glicolatos/química , Ácido Láctico/química , Temperatura Baixa , Cristalização , Modelos Moleculares , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA