Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 12(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35884279

RESUMO

This work is aimed at the development of new heterostructures based on cobalt phthalocyanines (CoPc) and gold nanoparticles (AuNPs), and the evaluation of the prospects of their use to determine low concentrations of ammonia and nitric oxide. For this purpose, CoPc films were decorated with AuNPs by gas-phase methods (MOCVD and PVD) and drop-casting (DC), and their chemiresistive sensor response to low concentrations of NO (10-50 ppb) and NH3 (1-10 ppm) was investigated. A comparative analysis of the characteristics of heterostructures depending on the preparation methods was carried out. The composition, structure, and morphology of the resulting hybrid films were studied by X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission (ICP-AES) spectroscopy, as well as electron microscopy methods to discuss the effect of these parameters on the sensor response of hybrid films to ammonia and nitric oxide. It was shown that regardless of the fabrication method, the response of Au/CoPc heterostructures to NH3 and NO gases increased with an increase in the concentration of gold. The sensor response of Au/CoPc heterostructures to NH3 increased 2-3.3 times compared to CoPc film, whereas in the case of NO it increased up to 16 times. The detection limits of the Au/CoPc heterostructure with a gold content of ca. 2.1 µg/cm2 for NH3 and NO were 0.1 ppm and 4 ppb, respectively. It was shown that Au/CoPc heterostructures can be used for the detection of NH3 in a gas mixture simulating exhaled air (N2-74%, O2-16%, H2O-6%, CO2-4%).


Assuntos
Ouro , Nanopartículas Metálicas , Amônia/análise , Gases/análise , Ouro/química , Indóis , Nanopartículas Metálicas/química , Óxido Nítrico , Compostos Organometálicos
2.
Nanomaterials (Basel) ; 13(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36616064

RESUMO

Single-walled carbon nanotubes (SWCNTs) with their high surface area, electrical conductivity, mechanical strength and elasticity are an ideal component for the development of composite electrode materials for batteries. Red phosphorus has a very high theoretical capacity with respect to lithium, but has poor conductivity and expends considerably as a result of the reaction with lithium ions. In this work, we compare the electrochemical performance of commercial SWCNTs with red phosphorus deposited on the outer surface of nanotubes and/or encapsulated in internal channels of nanotubes in lithium-ion batteries. External phosphorus, condensed from vapors, is easily oxidized upon contact with the environment and only the un-oxidized phosphorus cores participate in electrochemical reactions. The support of the SWCNT network ensures a stable long-term cycling for these phosphorus particles. The tubular space inside the SWCNTs stimulate the formation of chain phosphorus structures. The chains reversibly interact with lithium ions and provide a specific capacity of 1545 mAh·g-1 (calculated on the mass of phosphorus in the sample) at a current density of 0.1 A·g-1. As compared to the sample containing external phosphorus, SWCNTs with encapsulated phosphorus demonstrate higher reaction rates and a slight loss of initial capacity (~7%) on the 1000th cycle at 5 A·g-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...