Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38299492

RESUMO

Nitrosative stress is a feature of Alzheimer's disease (AD). Aims: We aimed to identify the cause underpinning increased nitric oxide (NO) in neurons and the impact of NO on neuronal function in AD. Results: We analyzed neuronal nitric oxide synthase (nNOS) protein levels in postmortem tissue and induced pluripotent stem cell (iPSC)-derived neurons from Alzheimer's patients and controls by immunohistochemistry and Western blots. Furthermore, we assessed the impact of modulating nNOS function or NO levels on neuronal glutamatergic signaling using calcium imaging. We show that nNOS protein levels are increased in early and severely affected brain regions of AD postmortem tissue, but not late and mildly affected regions, or cognitively normal individuals. The increased nNOS phenotype was also present in iPSC-derived neurons from late-onset Alzheimer's disease (LOAD) patients compared with controls, along with increased levels of nitrite, a stable marker of NO. Innovation: We observed a divergent functional impact of NO that included strengthening the calcium response in control neurons, while dysregulating calcium signaling and altering the amplitude and kinetics of the calcium responses to glutamate in the AD neurons. Pharmacological scavenging of NO or inhibition of nNOS prevented aberrant spontaneous calcium signaling in AD neurons. Conclusion: Together these data identify increases in nNOS protein in AD. Functional data suggest that NO modulation of glutamatergic calcium signaling is neuroprotective under nonpathogenic conditions, with increased nNOS and NO contributing to dysregulated spontaneous calcium signaling in AD neurons.

2.
J Neurochem ; 166(3): 497-516, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37323026

RESUMO

Microglia have been implicated in Alzheimer's disease (AD) pathogenesis through the identification of risk factor genes that are specifically or predominantly expressed in this cell type. Additional evidence suggests that microglia undergo dramatic morphological and phenotypic state changes during AD progression, as observed in human post-mortem tissue and animal model research. Although valuable, these studies are often hampered by either representing one time point in human tissue (end point) or because of the lack of conservation between species of microglial transcriptomes, proteomes and cell states. Thus, the development and application of novel human model systems have been beneficial in the study of microglia in neurodegeneration. Recent innovations include the use of human pluripotent stem cell (hPSC)-derived microglia in 2D or 3D culture systems, the transdifferentiation of microglia from patient monocytes and the xenotransplantation of hPSC-derived microglia into mouse brains. This review summarizes the recent innovations that have advanced our understanding of microglia in AD, through the use of single-cell RNA sequencing, hPSC-derived microglia culture within brain organoids and xenotransplantation into mouse brain. Through outlining the strengths and limitations of these approaches, we provide recommendations that will aid future endeavours in advancing our understanding of the complex role of microglia in AD onset and progression.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Humanos , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Transcriptoma , Encéfalo/metabolismo , Cabeça , Modelos Animais de Doenças
3.
Hum Mol Genet ; 32(14): 2386-2398, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37220877

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders that share pathological features, including the aberrant accumulation of ubiquitinated protein inclusions within motor neurons. Previously, we have shown that the sequestration of ubiquitin (Ub) into inclusions disrupts Ub homeostasis in cells expressing ALS-associated variants superoxide dismutase 1 (SOD1), fused in sarcoma (FUS) and TAR DNA-binding protein 43 (TDP-43). Here, we investigated whether an ALS/FTD-linked pathogenic variant in the CCNF gene, encoding the E3 Ub ligase Cyclin F (CCNF), also perturbs Ub homeostasis. The presence of a pathogenic CCNF variant was shown to cause ubiquitin-proteasome system (UPS) dysfunction in induced pluripotent stem cell-derived motor neurons harboring the CCNF  S621G mutation. The expression of the CCNFS621G variant was associated with an increased abundance of ubiquitinated proteins and significant changes in the ubiquitination of key UPS components. To further investigate the mechanisms responsible for this UPS dysfunction, we overexpressed CCNF in NSC-34 cells and found that the overexpression of both wild-type (WT) and the pathogenic variant of CCNF (CCNFS621G) altered free Ub levels. Furthermore, double mutants designed to decrease the ability of CCNF to form an active E3 Ub ligase complex significantly improved UPS function in cells expressing both CCNFWT and the CCNFS621G variant and were associated with increased levels of free monomeric Ub. Collectively, these results suggest that alterations to the ligase activity of the CCNF complex and the subsequent disruption to Ub homeostasis play an important role in the pathogenesis of CCNF-associated ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doença de Pick , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Ciclinas/genética , Neurônios Motores/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Doença de Pick/metabolismo , Homeostase/genética , Mutação
4.
CNS Neurosci Ther ; 29(9): 2481-2497, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36971196

RESUMO

INTRODUCTION: Previous research has suggested that vanishing white matter disease (VWMD) astrocytes fail to fully differentiate and respond differently to cellular stresses compared to healthy astrocytes. However, few studies have investigated potential VWMD therapeutics in monoculture patient-derived cell-based models. METHODS: To investigate the impact of alterations in astrocyte expression and function in VWMD, astrocytes were differentiated from patient and control induced pluripotent stem cells and analyzed by proteomics, pathway analysis, and functional assays, in the absence and presence of stressors or potential therapeutics. RESULTS: Vanishing white matter disease astrocytes demonstrated significantly reduced expression of astrocyte markers and markers of inflammatory activation or cellular stress relative to control astrocytes. These alterations were identified both in the presence and absence of polyinosinic:polycytidylic acid stimuli, which is used to simulate viral infections. Pathway analysis highlighted differential signaling in multiple pathways in VWMD astrocytes, including eukaryotic initiation factor 2 (EIF2) signaling, oxidative stress, oxidative phosphorylation (OXPHOS), mitochondrial function, the unfolded protein response (UPR), phagosome regulation, autophagy, ER stress, tricarboxylic acid cycle (TCA) cycle, glycolysis, tRNA signaling, and senescence pathways. Since oxidative stress and mitochondrial function were two of the key pathways affected, we investigated whether two independent therapeutic strategies could ameliorate astrocyte dysfunction: edaravone treatment and mitochondrial transfer. Edaravone treatment reduced differential VWMD protein expression of the UPR, phagosome regulation, ubiquitination, autophagy, ER stress, senescence, and TCA cycle pathways. Meanwhile, mitochondrial transfer decreased VWMD differential expression of the UPR, glycolysis, calcium transport, phagosome formation, and ER stress pathways, while further modulating EIF2 signaling, tRNA signaling, TCA cycle, and OXPHOS pathways. Mitochondrial transfer also increased the gene and protein expression of the astrocyte marker, glial fibrillary acidic protein (GFAP) in VWMD astrocytes. CONCLUSION: This study provides further insight into the etiology of VWMD astrocytic failure and suggests edaravone and mitochondrial transfer as potential candidate VWMD therapeutics that can ameliorate disease pathways in astrocytes related to oxidative stress, mitochondrial dysfunction, and proteostasis.


Assuntos
Leucoencefalopatias , Substância Branca , Humanos , Astrócitos/metabolismo , Edaravone/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Leucoencefalopatias/genética , Mitocôndrias/metabolismo , Substância Branca/metabolismo
5.
Biosensors (Basel) ; 12(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35735512

RESUMO

Routine cell culture reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) gene expression analysis is limited in scalability due to minimum sample requirement and multistep isolation procedures. In this study, we aimed to optimize and apply a cost-effective and rapid protocol for directly sampling gene expression data from microplate cell cultures. The optimized protocol involves direct lysis of microplate well population followed by a reduced thermocycler reaction time one-step RT-qPCR assay. In applications for inflammation and stress-induced cell-based models, the direct lysis RT-qPCR microplate assay was utilized to detect IFN1 and PPP1R15A expression by poly(I:C) treated primary fibroblast cultures, IL6 expression by poly(I:C) iPSC-derived astrocytes, and differential PPP1R15A expression by ER-stressed vanishing white-matter disease patient induced pluripotent stem cell (iPSC)-derived astrocytes. In application for neural differentiation medium recipe optimizations, conditions were screened for SYN1 and VGLUT1 in neuronal cultures, and S100B, GFAP and EAAT1 in astrocyte cultures. The protocol provides microplate gene expression results from cell lysate to readout within ~35 min, with comparable cost to routine RT-qPCR, and it may be utilized to support laboratory cell-based assays in basic and applied scientific and medical fields of research including stem-cell differentiation, cell physiology, and drug mechanism studies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Astrócitos/metabolismo , Diferenciação Celular , Expressão Gênica , Humanos , Neurônios/metabolismo
6.
Front Cell Neurosci ; 16: 858432, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634469

RESUMO

For neurological diseases, molecular and cellular research relies on the use of model systems to investigate disease processes and test potential therapeutics. The last decade has witnessed an increase in the number of studies using induced pluripotent stem cells to generate disease relevant cell types from patients. The reprogramming process permits the generation of a large number of cells but is potentially disadvantaged by introducing variability in clonal lines and the removal of phenotypes of aging, which are critical to understand neurodegenerative diseases. An under-utilized approach to disease modeling involves the transdifferentiation of aged cells from patients, such as fibroblasts or blood cells, into various neural cell types. In this review we discuss techniques used for rapid and efficient direct conversion to neural cell types. We examine the limitations and future perspectives of this rapidly advancing field that could improve neurological disease modeling and drug discovery.

7.
Stem Cell Reports ; 17(1): 14-34, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34971564

RESUMO

Directed neuronal differentiation of human pluripotent stem cells (hPSCs), neural progenitors, or fibroblasts using transcription factors has allowed for the rapid and highly reproducible differentiation of mature and functional neurons. Exogenous expression of the transcription factor Neurogenin-2 (NGN2) has been widely used to generate different populations of neurons, which have been used in neurodevelopment studies, disease modeling, drug screening, and neuronal replacement therapies. Could NGN2 be a "one-glove-fits-all" approach for neuronal differentiations? This review summarizes the cellular roles of NGN2 and describes the applications and limitations of using NGN2 for the rapid and directed differentiation of neurons.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores , Técnicas de Cultura de Células , Diferenciação Celular/genética , Linhagem da Célula/genética , Terapia Baseada em Transplante de Células e Tecidos , Regulação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
8.
Front Cell Neurosci ; 14: 600895, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362470

RESUMO

Sensory perception is fundamental to everyday life, yet understanding of human sensory physiology at the molecular level is hindered due to constraints on tissue availability. Emerging strategies to study and characterize peripheral neuropathies in vitro involve the use of human pluripotent stem cells (hPSCs) differentiated into dorsal root ganglion (DRG) sensory neurons. However, neuronal functionality and maturity are limited and underexplored. A recent and promising approach for directing hPSC differentiation towards functionally mature neurons involves the exogenous expression of Neurogenin-2 (NGN2). The optimized protocol described here generates sensory neurons from hPSC-derived neural crest (NC) progenitors through virally induced NGN2 expression. NC cells were derived from hPSCs via a small molecule inhibitor approach and enriched for migrating NC cells (66% SOX10+ cells). At the protein and transcript level, the resulting NGN2 induced sensory neurons (NGN2iSNs) express sensory neuron markers such as BRN3A (82% BRN3A+ cells), ISLET1 (91% ISLET1+ cells), TRKA, TRKB, and TRKC. Importantly, NGN2iSNs repetitively fire action potentials (APs) supported by voltage-gated sodium, potassium, and calcium conductances. In-depth analysis of the molecular basis of NGN2iSN excitability revealed functional expression of ion channels associated with the excitability of primary afferent neurons, such as Nav1.7, Nav1.8, Kv1.2, Kv2.1, BK, Cav2.1, Cav2.2, Cav3.2, ASICs and HCN among other ion channels, for which we provide functional and transcriptional evidence. Our characterization of stem cell-derived sensory neurons sheds light on the molecular basis of human sensory physiology and highlights the suitability of using hPSC-derived sensory neurons for modeling human DRG development and their potential in the study of human peripheral neuropathies and drug therapies.

9.
Neuroscientist ; 26(5-6): 438-454, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32281909

RESUMO

Because our beliefs regarding our individuality, autonomy, and personhood are intimately bound up with our brains, there is a public fascination with cerebral organoids, the "mini-brain," the "brain in a dish". At the same time, the ethical issues around organoids are only now being explored. What are the prospects of using human cerebral organoids to better understand, treat, or prevent dementia? Will human organoids represent an improvement on the current, less-than-satisfactory, animal models? When considering these questions, two major issues arise. One is the general challenge associated with using any stem cell-generated preparation for in vitro modelling (challenges amplified when using organoids compared with simpler cell culture systems). The other relates to complexities associated with defining and understanding what we mean by the term "dementia." We discuss 10 puzzles, issues, and stumbling blocks to watch for in the quest to model "dementia in a dish."


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Demência/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Organoides/citologia , Animais , Diferenciação Celular/fisiologia , Demência/fisiopatologia , Humanos
10.
Biomater Sci ; 8(9): 2398-2403, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32270790

RESUMO

Increasing frataxin protein levels through gene therapy is envisaged to improve therapeutic outcomes for patients with Friedreich's ataxia (FRDA). A non-viral strategy that uses submicrometer-sized multilayered particles to deliver frataxin-encoding plasmid DNA affords up to 27 000-fold increase in frataxin gene expression within 2 days in vitro in a stem cell-derived neuronal model of FRDA.


Assuntos
DNA/administração & dosagem , Ataxia de Friedreich , Proteínas de Ligação ao Ferro/genética , Modelos Biológicos , Plasmídeos , Células Receptoras Sensoriais/metabolismo , Linhagem Celular Tumoral , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Frataxina
11.
eNeuro ; 7(2)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32075869

RESUMO

The molecular mechanisms governing normal neurodevelopment are tightly regulated by the action of transcription factors. Repressor element 1 (RE1) silencing transcription factor (REST) is widely documented as a regulator of neurogenesis that acts by recruiting corepressor proteins and repressing neuronal gene expression in non-neuronal cells. The REST corepressor 1 (CoREST1), CoREST2, and CoREST3 are best described for their role as part of the REST complex. However, recent evidence has shown the proteins have the ability to repress expression of distinct target genes in a REST-independent manner. These findings indicate that each CoREST paralogue may have distinct and critical roles in regulating neurodevelopment and are more than simply "REST corepressors," whereby they act as independent repressors orchestrating biological processes during neurodevelopment.


Assuntos
Proteínas do Tecido Nervoso , Proteínas Repressoras , Proteínas Correpressoras , Proteínas do Tecido Nervoso/genética , Neurônios , Proteínas Repressoras/genética , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...