Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 52(4): 741-4, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26564002

RESUMO

Urea is considered a fundamental building block in prebiotic chemistry. Its formation on early Earth has not yet been explained satisfactorily and exogenous delivery has been considered. We report on the synthesis along with the first online and in situ identification of urea after exposing inorganic ices to ionizing radiation.


Assuntos
Gelo/análise , Ureia/síntese química , Difusão , Meio Ambiente Extraterreno , Meteoroides , Radiação , Análise Espectral , Ureia/química
2.
J Phys Chem A ; 115(37): 10251-8, 2011 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-21823627

RESUMO

The crossed molecular beams reaction of dicarbon molecules, C(2)(X(1)Σ(g)(+)/a(3)Π(u)) with vinylacetylene was studied under single collision conditions at a collision energy of 31.0 kJ mol(-1) and combined with electronic structure calculations on the singlet and triplet C(6)H(4) potential energy surfaces. The investigations indicate that both reactions on the triplet and singlet surfaces are dictated by a barrierless addition of the dicarbon unit to the vinylacetylene molecule and hence indirect scattering dynamics via long-lived C(6)H(4) complexes. On the singlet surface, ethynylbutatriene and vinyldiacetylene were found to decompose via atomic hydrogen loss involving loose exit transition states to form exclusively the resonantly stabilized 1-hexene-3,4-diynyl-2 radical (C(6)H(3); H(2)CCCCCCH; C(2v)). On the triplet surface, ethynylbutatriene emitted a hydrogen atom through a tight exit transition state located about 20 kJ mol(-1) above the separated stabilized 1-hexene-3,4-diynyl-2 radical plus atomic hydrogen product; to a minor amount (<5%) theory predicts that the aromatic 1,2,3-tridehydrobenzene molecule is formed. Compared to previous crossed beams and theoretical investigations on the formation of aromatic C(6)H(x) (x = 6, 5, 4) molecules benzene, phenyl, and o-benzyne, the decreasing energy difference from benzene via phenyl and o-benzyne between the aromatic and acyclic reaction products, i.e., 253, 218, and 58 kJ mol(-1), is narrowed down to only ∼7 kJ mol(-1) for the C(6)H(3) system (aromatic 1,2,3-tridehydrobenzene versus the resonantly stabilized free radical 1-hexene-3,4-diynyl-2). Therefore, the C(6)H(3) system can be seen as a "transition" stage among the C(6)H(x) (x = 6-1) systems, in which the energy gap between the aromatic isomer (x = 6, 5, 4) is reduced compared to the acyclic isomer as the carbon-to-hydrogen ratio increases and the acyclic isomer becomes more stable (x = 1, 2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA