Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 12(1): 18587, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396723

RESUMO

The dramatic increase of natural gas use in China, as a substitute for coal, helps to reduce CO2 emissions and air pollution, but the climate mitigation benefit can be offset by methane leakage into the atmosphere. We estimate methane emissions from 2010 to 2018 in four regions of China using the GOSAT satellite data and in-situ observations with a high-resolution (0.1° × 0.1°) inverse model and analyze interannual changes of emissions by source sectors. We find that estimated methane emission over the north-eastern China region contributes the largest part (0.77 Tg CH4 yr-1) of the methane emission growth rate of China (0.87 Tg CH4 yr-1) and is largely attributable to the growth in natural gas use. The results provide evidence of a detectable impact on atmospheric methane observations by the increasing natural gas use in China and call for methane emission reductions throughout the gas supply chain and promotion of low emission end-use facilities.


Assuntos
Poluentes Atmosféricos , Gás Natural , Gás Natural/análise , Metano/análise , Poluentes Atmosféricos/análise , Atmosfera , Carvão Mineral
3.
Glob Chang Biol ; 28(1): 182-200, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34553464

RESUMO

The ongoing development of the Global Carbon Project (GCP) global methane (CH4 ) budget shows a continuation of increasing CH4 emissions and CH4 accumulation in the atmosphere during 2000-2017. Here, we decompose the global budget into 19 regions (18 land and 1 oceanic) and five key source sectors to spatially attribute the observed global trends. A comparison of top-down (TD) (atmospheric and transport model-based) and bottom-up (BU) (inventory- and process model-based) CH4 emission estimates demonstrates robust temporal trends with CH4 emissions increasing in 16 of the 19 regions. Five regions-China, Southeast Asia, USA, South Asia, and Brazil-account for >40% of the global total emissions (their anthropogenic and natural sources together totaling >270 Tg CH4  yr-1 in 2008-2017). Two of these regions, China and South Asia, emit predominantly anthropogenic emissions (>75%) and together emit more than 25% of global anthropogenic emissions. China and the Middle East show the largest increases in total emission rates over the 2000 to 2017 period with regional emissions increasing by >20%. In contrast, Europe and Korea and Japan show a steady decline in CH4 emission rates, with total emissions decreasing by ~10% between 2000 and 2017. Coal mining, waste (predominantly solid waste disposal) and livestock (especially enteric fermentation) are dominant drivers of observed emissions increases while declines appear driven by a combination of waste and fossil emission reductions. As such, together these sectors present the greatest risks of further increasing the atmospheric CH4 burden and the greatest opportunities for greenhouse gas abatement.


Assuntos
Atmosfera , Metano , Animais , China , Gado , Metano/análise , Oceanos e Mares
4.
Sci Total Environ ; 812: 151508, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34762957

RESUMO

Top-down modeling estimates are among the most reliable information available on the CO2 fluxes of the earth system. The inadequate coverage of CO2 observing stations over the tropical regions adds a limitation to this estimate, especially when the satellite XCO2 is strictly screened for cloud contamination, aerosol, dust, etc. In this study, we investigated the potential benefit of a global ground-based observing station network, 17 newly proposed stations over India, and global satellite XCO2 in reducing the uncertainty of terrestrial biospheric fluxes of Tropical Asia-Eurasia in TransCom cyclo-stationary inversion. The data from selected 80 global ground-based CO2 observation stations, together with two additional stations from India (i.e., Cape Rama and Sinhagad) and satellite XCO2, helps to reduce the temperate Eurasian terrestrial flux uncertainty by 23.8%, 26.4%, and 36.2%, respectively. This further improved to 54.7% by adding the newly proposed stations over India into the inversion. By separating the Indian sub-continent from temperate Eurasia (as inspired by the heterogeneity in the terrestrial ecosystems, prevailing meteorological conditions, and the orography of this vast region), the inversion evinces the capacity of existing CO2 observations to reduce the Indian terrestrial flux uncertainty by 20.5%. The largest benefit (70% reduction of annual mean uncertainty) for estimating Indian terrestrial fluxes could be achieved by combining these global observations with data from the newly proposed stations over India. The existing two stations from India suggest Temperate Eurasia as a mild source of CO2 (0.33 ± 0.57 Pg C yr-1), albeit with prominent anthropogenic influences visible in these two stations during the dry seasons. This implies that the proposed new stations should be cautiously placed to avoid such effects. The study also finds that the newly proposed stations over India also have an impact in constraining nearby oceanic CO2 fluxes.


Assuntos
Dióxido de Carbono , Ecossistema , Ásia , Dióxido de Carbono/análise , Índia , Estações do Ano
5.
Sci Rep ; 10(1): 7963, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409693

RESUMO

Cities are responsible for the largest anthropogenic CO2 emissions and are key to effective emission reduction strategies. Urban CO2 emissions estimated from vertical atmospheric measurements can contribute to an independent quantification of the reporting of national emissions and will thus have political implications. We analyzed vertical atmospheric CO2 mole fraction data obtained onboard commercial aircraft in proximity to 36 airports worldwide, as part of the Comprehensive Observation Network for Trace gases by Airliners (CONTRAIL) program. At many airports, we observed significant flight-to-flight variations of CO2 enhancements downwind of neighboring cities, providing advective fingerprints of city CO2 emissions. Observed CO2 variability increased with decreasing altitude, the magnitude of which varied from city to city. We found that the magnitude of CO2 variability near the ground (~1 km altitude) at an airport was correlated with the intensity of CO2 emissions from a nearby city. Our study has demonstrated the usefulness of commercial aircraft data for city-scale anthropogenic CO2 emission studies.

6.
Earth Syst Sci Data ; 10(1): 87-107, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31662803

RESUMO

The Open-source Data Inventory for Anthropogenic CO2 (ODIAC) is a global high-spatial resolution gridded emission data product that distributes carbon dioxide (CO2) emissions from fossil fuel combustion. The emission spatial distributions are estimated at a 1×1 km spatial resolution over land using power plant profiles (emission intensity and geographical location) and satellite-observed nighttime lights. This paper describes the year 2016 version of the ODIAC emission data product (ODIAC2016) and presents analyses that help guiding data users, especially for atmospheric CO2 tracer transport simulations and flux inversion analysis. Since the original publication in 2011, we have made modifications to our emission modeling framework in order to deliver a comprehensive global gridded emission data product. Major changes from the 2011 publication are 1) the use of emissions estimates made by the Carbon Dioxide Information Analysis Center (CDIAC) at the Oak Ridge National Laboratory (ORNL) by fuel type (solid, liquid, gas, cement manufacturing, gas flaring and international aviation and marine bunkers), 2) the use of multiple spatial emission proxies by fuel type such as nightlight data specific to gas flaring and ship/aircraft fleet tracks and 3) the inclusion of emission temporal variations. Using global fuel consumption data, we extrapolated the CDIAC emissions estimates for the recent years and produced the ODIAC2016 emission data product that covers 2000-2015. Our emission data can be viewed as an extended version of CDIAC gridded emission data product, which should allow data users to impose global fossil fuel emissions in more comprehensive manner than original CDIAC product. Our new emission modeling framework allows us to produce future versions of ODIAC emission data product with a timely update. Such capability has become more significant given the CDIAC/ORNL's shutdown. ODIAC data product could play an important role to support carbon cycle science, especially modeling studies with space-based CO2 data collected near real time by ongoing carbon observing missions such as Japanese Greenhouse Observing SATellite (GOSAT), NASA's Orbiting Carbon Observatory 2 (OCO-2) and upcoming future missions. The ODIAC emission data product including the latest version of the ODIAC emission data (ODIAC2017, 2000-2016), is distributed from http://db.cger.nies.go.jp/dataset/ODIAC/ with a DOI.

7.
PLoS One ; 11(11): e0166039, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27851783

RESUMO

The Amazon is a significant source of atmospheric methane, but little is known about the source response to increasing drought severity and frequency. We investigated satellite observations of atmospheric column-averaged methane for the 2010 drought and subsequent 2011 wet year in the Amazon using an atmospheric inversion scheme. Our analysis indicates an increase in atmospheric methane over the southern Amazon region during the drought, representing an increase in annual emissions relative to the wet year. We attribute the increase to emissions from biomass burning driven by intense drought, combined with carbon monoxide showing seasonal variations corresponding to methane variations. We show that there is probably a strong correspondence between drought and methane emissions in the Amazon.


Assuntos
Poluição do Ar/análise , Biomassa , Secas , Incêndios , Metano/análise , Brasil , Monóxido de Carbono/análise , Atividades Humanas , Comunicações Via Satélite , Fatores de Tempo
9.
Nature ; 415(6872): 626-30, 2002 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-11832942

RESUMO

Information about regional carbon sources and sinks can be derived from variations in observed atmospheric CO2 concentrations via inverse modelling with atmospheric tracer transport models. A consensus has not yet been reached regarding the size and distribution of regional carbon fluxes obtained using this approach, partly owing to the use of several different atmospheric transport models. Here we report estimates of surface-atmosphere CO2 fluxes from an intercomparison of atmospheric CO2 inversion models (the TransCom 3 project), which includes 16 transport models and model variants. We find an uptake of CO2 in the southern extratropical ocean less than that estimated from ocean measurements, a result that is not sensitive to transport models or methodological approaches. We also find a northern land carbon sink that is distributed relatively evenly among the continents of the Northern Hemisphere, but these results show some sensitivity to transport differences among models, especially in how they respond to seasonal terrestrial exchange of CO2. Overall, carbon fluxes integrated over latitudinal zones are strongly constrained by observations in the middle to high latitudes. Further significant constraints to our understanding of regional carbon fluxes will therefore require improvements in transport models and expansion of the CO2 observation network within the tropics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...