Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(2): 241-251.e4, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36435177

RESUMO

Although learning is often viewed as a unique feature of organisms with complex nervous systems, single-celled organisms also demonstrate basic forms of learning. The giant ciliate Stentor coeruleus responds to mechanical stimuli by contracting into a compact shape, presumably as a defense mechanism. When a Stentor cell is repeatedly stimulated at a constant level of force, it will learn to ignore that stimulus but will still respond to stronger stimuli. Prior studies of habituation in Stentor reported a graded response, suggesting that cells transition through a continuous range of response probabilities. By analyzing single cells using an automated apparatus to deliver calibrated stimuli, we find that habituation occurs via a single step-like switch in contraction probability within each cell, with the graded response in a population arising from the random distribution of switching times in individual cells. This step-like response allows Stentor behavior to be represented by a simple two-state model whose parameters can be estimated from experimental measurements. We find that transition rates depend on stimulus force and also on the time between stimuli. The ability to measure the behavior of the same cell to the same stimulus allowed us to quantify the functional heterogeneity among single cells. Together, our results suggest that the behavior of Stentor is governed by a two-state stochastic machine whose transition rates are sensitive to the time series properties of the input stimuli.


Assuntos
Cilióforos , Habituação Psicofisiológica , Análise de Célula Única , Cilióforos/fisiologia , Fatores de Tempo
2.
Elife ; 112022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35924891

RESUMO

The giant ciliate Stentor coeruleus is a classical model system for studying regeneration and morphogenesis in a single cell. The anterior of the cell is marked by an array of cilia, known as the oral apparatus, which can be induced to shed and regenerate in a series of reproducible morphological steps, previously shown to require transcription. If a cell is cut in half, each half regenerates an intact cell. We used RNA sequencing (RNAseq) to assay the dynamic changes in Stentor's transcriptome during regeneration, after both oral apparatus shedding and bisection, allowing us to identify distinct temporal waves of gene expression including kinases, RNA -binding proteins, centriole biogenesis factors, and orthologs of human ciliopathy genes. By comparing transcriptional profiles of different regeneration events, we identified distinct modules of gene expression corresponding to oral apparatus regeneration, posterior holdfast regeneration, and recovery after wounding. By measuring gene expression after blocking translation, we show that the sequential waves of gene expression involve a cascade mechanism in which later waves of expression are triggered by translation products of early-expressed genes. Among the early-expressed genes, we identified an E2F transcription factor and the RNA-binding protein Pumilio as potential regulators of regeneration based on the expression pattern of their predicted target genes. RNAi-mediated knockdown experiments indicate that Pumilio is required for regenerating oral structures of the correct size. E2F is involved in the completion of regeneration but is dispensable for earlier steps. This work allows us to classify regeneration genes into groups based on their potential role for regeneration in distinct cell regeneration paradigms, and provides insight into how a single cell can coordinate complex morphogenetic pathways to regenerate missing structures.


Assuntos
Cilióforos , Sequência de Bases , Cilióforos/genética , Humanos , Interferência de RNA , Análise de Sequência de RNA , Transcriptoma
3.
Curr Biol ; 32(10): 2300-2308.e4, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35447087

RESUMO

Cellular components are non-randomly arranged with respect to the shape and polarity of the whole cell.1-4 Patterning within cells can extend down to the level of individual proteins and mRNA.5,6 But how much of the proteome is actually localized with respect to cell polarity axes? Proteomics combined with cellular fractionation7-11 has shown that most proteins localize to one or more organelles but does not tell us how many proteins have a polarized localization with respect to the large-scale polarity axes of the intact cell. Genome-wide localization studies in yeast12-15 found that only a few percent of proteins have a localized position relative to the cell polarity axis defined by sites of polarized cell growth. Here, we describe an approach for analyzing protein distribution within a cell with a visibly obvious global patterning-the giant ciliate Stentor coeruleus.16,17 Ciliates, including Stentor, have highly polarized cell shapes with visible surface patterning.1,18 A Stentor cell is roughly 2 mm long, allowing a "proteomic dissection" in which microsurgery is used to separate cellular fragments along the anterior-posterior axis, followed by comparative proteomic analysis. In our analysis, 25% of the proteome, including signaling proteins, centrin/SFI proteins, and GAS2 orthologs, shows a polarized location along the cell's anterior-posterior axis. We conclude that a large proportion of all proteins are polarized with respect to global cell polarity axes and that proteomic dissection provides a simple and effective approach for spatial proteomics.


Assuntos
Cilióforos , Proteoma , Polaridade Celular/genética , Cilióforos/genética , Morfogênese/genética , Proteoma/metabolismo , Proteômica , Saccharomyces cerevisiae
4.
Philos Trans R Soc Lond B Biol Sci ; 375(1792): 20190167, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31884915

RESUMO

The phenomenon of ciliary coordination has garnered increasing attention in recent decades and multiple theories have been proposed to explain its occurrence in different biological systems. While hydrodynamic interactions are thought to dictate the large-scale coordinated activity of epithelial cilia for fluid transport, it is rather basal coupling that accounts for synchronous swimming gaits in model microeukaryotes such as Chlamydomonas. Unicellular ciliates present a fascinating yet understudied context in which coordination is found to persist in ciliary arrays positioned across millimetre scales on the same cell. Here, we focus on the ciliate Stentor coeruleus, chosen for its large size, complex ciliary organization, and capacity for cellular regeneration. These large protists exhibit ciliary differentiation between cortical rows of short body cilia used for swimming, and an anterior ring of longer, fused cilia called the membranellar band (MB). The oral cilia in the MB beat metachronously to produce strong feeding currents. Remarkably, upon injury, the MB can be shed and regenerated de novo. Here, we follow and track this developmental sequence in its entirety to elucidate the emergence of coordinated ciliary beating: from band formation, elongation, curling and final migration towards the cell anterior. We reveal a complex interplay between hydrodynamics and ciliary restructuring in Stentor, and highlight for the first time the importance of a ring-like topology for achieving long-range metachronism in ciliated structures. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.


Assuntos
Cílios/fisiologia , Cilióforos/fisiologia , Regeneração , Cilióforos/crescimento & desenvolvimento
5.
J Vis Exp ; (136)2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29985325

RESUMO

Cells need to be able to regenerate their parts to recover from external perturbations. The unicellular ciliate Stentor coeruleus is an excellent model organism to study wound healing and subsequent cell regeneration. The Stentor genome became available recently, along with modern molecular biology methods, such as RNAi. These tools make it possible to study single-cell regeneration at the molecular level. The first section of the protocol covers establishing Stentor cell cultures from single cells or cell fragments, along with general guidelines for maintaining Stentor cultures. Culturing Stentor in large quantities allows for the use of valuable tools like biochemistry, sequencing, and mass spectrometry. Subsequent sections of the protocol cover different approaches to inducing regeneration in Stentor. Manually cutting cells with a glass needle allows studying the regeneration of large cell parts, while treating cells with either sucrose or urea allows studying the regeneration of specific structures located at the anterior end of the cell. A method for imaging individual regenerating cells is provided, along with a rubric for staging and analyzing the dynamics of regeneration. The entire process of regeneration is divided in three stages. By visualizing the dynamics of the progression of a population of cells through the stages, the heterogeneity in regeneration timing is demonstrated.


Assuntos
Cilióforos/crescimento & desenvolvimento , Técnicas Histológicas/métodos , Regeneração/fisiologia , Animais , Cilióforos/patogenicidade
6.
Cell ; 165(5): 1182-1196, 2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-27180904

RESUMO

Cell polarization is crucial for the functioning of all organisms. The cytoskeleton is central to the process but its role in symmetry breaking is poorly understood. We study cell polarization when fission yeast cells exit starvation. We show that the basis of polarity generation is de novo sterol biosynthesis, cell surface delivery of sterols, and their recruitment to the cell poles. This involves four phases occurring independent of the polarity factor cdc42p. Initially, multiple, randomly distributed sterol-rich membrane (SRM) domains form at the plasma membrane, independent of the cytoskeleton and cell growth. These domains provide platforms on which the growth and polarity machinery assembles. SRM domains are then polarized by the microtubule-dependent polarity factor tea1p, which prepares for monopolar growth initiation and later switching to bipolar growth. SRM polarization requires F-actin but not the F-actin organizing polarity factors for3p and bud6p. We conclude that SRMs are key to cell polarization.


Assuntos
Membrana Celular/química , Schizosaccharomyces/química , Schizosaccharomyces/citologia , Actinas/metabolismo , Polaridade Celular , Citoesqueleto/metabolismo , Microdomínios da Membrana , Proteínas Associadas aos Microtúbulos/metabolismo , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
7.
Methods Mol Biol ; 1369: 309-46, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26519321

RESUMO

The field of fluorescent proteins (FPs) is constantly developing. The use of FPs changed the field of life sciences completely, starting a new era of direct observation and quantification of cellular processes. The broad spectrum of FPs (see Fig. 1) with a wide range of characteristics allows their use in many different experiments. This review discusses the use of FPs for imaging in budding yeast (Saccharomyces cerevisiae) and fission yeast Schizosaccharomyces pombe). The information included in this review is relevant for both species unless stated otherwise.


Assuntos
Expressão Gênica , Genes Reporter , Proteínas Luminescentes/genética , Leveduras/genética , Leveduras/metabolismo , Bases de Dados Factuais , Vetores Genéticos/genética , Proteínas Luminescentes/metabolismo , Imagem Molecular/métodos , Navegador
8.
Mol Syst Biol ; 5: 241, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19293826

RESUMO

The cytoskeleton is essential for the maintenance of cell morphology in eukaryotes. In fission yeast, for example, polarized growth sites are organized by actin, whereas microtubules (MTs) acting upstream control where growth occurs. Growth is limited to the cell poles when MTs undergo catastrophes there and not elsewhere on the cortex. Here, we report that the modulation of MT dynamics by forces as observed in vitro can quantitatively explain the localization of MT catastrophes in Schizosaccharomyces pombe. However, we found that it is necessary to add length-dependent catastrophe rates to make the model fully consistent with other previously measured traits of MTs. We explain the measured statistical distribution of MT-cortex contact times and re-examine the curling behavior of MTs in unbranched straight tea1Delta cells. Importantly, the model demonstrates that MTs together with associated proteins such as depolymerizing kinesins are, in principle, sufficient to mark the cell poles.


Assuntos
Interfase , Microtúbulos/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Fenômenos Biomecânicos , Simulação por Computador , Proteínas de Fluorescência Verde/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Tubulina (Proteína)/metabolismo
9.
Curr Biol ; 18(22): 1748-53, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19026544

RESUMO

The cylindrical rod shape of the fission yeast Schizosaccharomyces pombe is organized and maintained by interactions between the microtubule, cell membrane, and actin cytoskeleton [1]. Mutations affecting any components in this pathway lead to bent, branched, or round cells [2]. In this context, the cytoskeleton controls cell polarity and thus dictates cell shape. Here, we use soft-lithography techniques to construct microfluidic channels to control cell shape. We show that when wild-type rod-shaped cells are physically forced to grow in a bent fashion, they will reorganize their cytoskeleton and redirect cell polarity to make new ectopic cell tips. Moreover, when bent or round mutant cells are physically forced to conform to the wild-type rod-shape, they will reverse their mutational phenotypes by reorganizing their cytoskeleton to maintain proper wild-type-like localization of microtubules, cell-membrane proteins, and actin. Our study provides direct evidence that the cytoskeleton controls cell polarity and cell shape and demonstrates that cell shape also controls the organization of the cytoskeleton in a feedback loop. We present a model of the feedback loop to explain how fission yeast maintain a rod shape and how perturbation of specific parameters of the loop can lead to different cell shapes.


Assuntos
Polaridade Celular/fisiologia , Forma Celular , Microtúbulos/fisiologia , Schizosaccharomyces/ultraestrutura , Crescimento Celular , Microfluídica , Microtúbulos/ultraestrutura , Modelos Biológicos , Morfogênese , Mutação , Fenótipo , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética
10.
Biotechnol Bioeng ; 96(3): 615-21, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16900526

RESUMO

To study virus propagation, we have developed a method by which the propagation of the Lambda bacteriophage can be observed and quantified. This is done by creating a fusion protein of the capsid protein gpD and the enhanced yellow fluorescent protein (EYFP). We show that this fusion allows capsid formation and that the modified viruses propagate on a surface covered with host bacteria thus forming fluorescent plaques. The intensity of fluorescence in a growing plaque determines the distribution of phages. This provides a new tool to study the propagation of infection at the microscopic level.


Assuntos
Bacteriófago lambda/metabolismo , Proteínas do Capsídeo/metabolismo , Escherichia coli/virologia , Glicoproteínas/metabolismo , Montagem de Vírus/fisiologia , Bacteriófago lambda/genética , Proteínas do Capsídeo/genética , Escherichia coli/citologia , Escherichia coli/genética , Glicoproteínas/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...