Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(5): 104321, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35602951

RESUMO

This review discusses physical, chemical, and direct lithium-ion battery recycling methods to have an outlook on future recovery routes. Physical and chemical processes are employed to treat cathode active materials which are the greatest cost contributor in the production of lithium batteries. Direct recycling processes maintain the original chemical structure and process value of battery materials by recovering and reusing them directly. Mechanical separation is essential to liberate cathode materials that are concentrated in the finer size region. However, currently, the cathode active materials are being concentrated at a cut point that is considerably greater than the actual size found in spent batteries. Effective physical methods reduce the cost of subsequent chemical treatment and thereafter re-lithiation successfully reintroduces lithium into spent cathodes. Some of the current challenges are the difficulty in controlling impurities in recovered products and ensuring that the entire recycling process is more sustainable.

2.
Environ Sci Pollut Res Int ; 29(5): 7042-7052, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34467487

RESUMO

The high toxicity and low volatility of PCDD/Fs prevent detailed study of their catalytic degradation removal characteristics. In this study, 1,2-dichlorobenzene (1,2-DCBz) was initially used as a model to investigate the catalytic characteristics of various vanadium-based catalysts prepared by different methods. Then, the optimized catalyst was used for catalytic degradation of real PCDD/Fs at low temperatures based on a self-made stable source. The VOx/TiO2 catalysts synthesized by the mechanochemical method (VTi-MC2) had a higher 1,2-DCBz removal efficiency (>85%) and stability (> 420 min) at low temperatures (< 200 °C) compared to VTi-SG (sol-gol method) and VTi-WI (wetness impregnation method). The physicochemical properties of catalysts were studied using comprehensive characterization. It was found that the VTi-MC2 has better VOx species distribution and possesses the highest V5+ species and surface adsorbed oxygen content, which are the key factors that contributed to the higher removal efficiency. Accordingly, the mechanochemical method can be used to control the physicochemical properties of catalysts by adjusting the milling parameters. The optimum ball milling time is 2 h and a suitable precursor is NH4VO3 for VOx/TiO2. Moreover, the removal efficiency and catalytic degradation efficiency of PCDD/Fs in gas phase catalyzed by VTi-MC2 were 97% and 50% respectively, within a range of temperatures below 200 °C, which are both higher than those reported research. In general, the mechanochemical strategy employed in this study provides a means for seeking more efficient catalysts used for low-temperature degradation of various trace organic pollutants.


Assuntos
Dibenzodioxinas Policloradas , Vanádio , Catálise , Dibenzofuranos , Temperatura
3.
Environ Pollut ; 284: 117113, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33892463

RESUMO

Typical organic pollutants from coal-combustion flue gas such as volatile organic compounds (VOCs) need to be effectively controlled. This work synthesized a series of nitrogen-doped hierarchical porous carbons (NHPCs) by one-step activation with various proportions of cellulose, (NH4)2C2O4 and KHCO3/NaHCO3. The NHPCs have a high specific surface area and pore volume up to 2816 m2/g and 1.413 cm3/g as well as a hierarchical porous structure with micro-meso-macropores distribution. The dynamic adsorption tests of toluene at 600 ppm showed that NHPCs have a high adsorption capacity up to 585 mg/g (NHPC(K)131), this was about 3 times more than that of AC (208 mg/g), and is a better absorbent compared to many other carbon adsorbents. The porous characteristics and toluene adsorption properties of NHPCs improved along with the fluctuation of the proportions of raw materials and active agents. The micropore size of the material is the main factor that affecting the toluene adsorption capacity. The analysis of toluene dynamic adsorption breakthrough curves revealed that NHPCs had great toluene adsorption kinetics with high adsorption rate constants and short mass transfer zone. The excellent toluene adsorption kinetics of NHPCs can be attributed to the hierarchical porous structure. The abundant 2-10 nm mesopores and macropores of NHPCs act as mass transfer channels for toluene molecules. The XPS analysis showed that the NHPCs have nitrogen doping up to 6.71% (NHPC(Na)161) and they effectively promote toluene adsorption. The nitrogen doping mechanism can be attributed to the reactions between cellulose pyrolysis substances and NH3 which decomposed from (NH4)2C2O4. Moreover, the pore forming reactivity of KHCO3 is better than that of NaHCO3 in the NHPCs activation process.


Assuntos
Carbono , Tolueno , Adsorção , Nitrogênio , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...