Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nanoscale ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38868990

RESUMO

Efficient exciton transport is the essential property of natural and synthetic light-harvesting (LH) devices. Here we investigate exciton transport properties in LH organic polymer nanoparticles (ONPs) of 40 nm diameter. The ONPs are loaded with a rhodamine B dye derivative and bulky counterion, enabling dye loadings as high as 0.3 M, while preserving fluorescence quantum yields larger than 30%. We use time-resolved fluorescence spectroscopy to monitor exciton-exciton annihilation (EEA) kinetics within the ONPs dispersed in water. We demonstrate that unlike the common practice for photoluminescence investigations of EEA, the non-uniform intensity profile of the excitation light pulse must be taken into account to analyse reliably intensity-dependent population dynamics. Alternatively, a simple confocal detection scheme is demonstrated, which enables (i) retrieving the correct value for the bimolecular EEA rate which would otherwise be underestimated by a typical factor of three, and (ii) revealing minor EEA by-products otherwise unnoticed. Considering the ONPs as homogeneous rigid solutions of weakly interacting dyes, we postulate an incoherent exciton hoping mechanism to infer a diffusion constant exceeding 0.003 cm2 s-1 and a diffusion length as large as 70 nm. This work demonstrates the success of the present ONP design strategy at engineering efficient exciton transport in disordered multichromophoric systems.

2.
Chem Sci ; 14(35): 9328-9349, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37712031

RESUMO

Experimental and theoretical foundations for femtosecond time-resolved circular dichroism (TRCD) spectroscopy of excitonic systems are presented. In this method, the system is pumped with linearly polarized light and the signal is defined as the difference between the transient absorption spectrum probed with left and with right circularly polarized light. We present a new experimental setup with a polarization grating as key element to generate circularly polarized pulses. Herein the positive (negative) first order of the diffracted light is left-(right-)circularly polarized and serves as a probe pulse in a TRCD experiment. The grating is capable of transferring ultrashort broadband pulses ranging from 470 nm to 720 nm into two separate beams with opposite ellipticity. By applying a specific chopping scheme we can switch between left and right circular polarizations and detect transient absorption (TA) and TRCD spectra on a shot-to-shot basis simultaneously. We perform experiments on a squaraine polymer, investigating excitonic dynamics, and we develop a general theory for TRCD experiments of excitonically coupled systems that we then apply to describe the experimental data in this particular example. At a magic angle of 54.7° between the pump-pulse polarization and the propagation direction of the probe pulse, the TRCD and TA signals become particularly simple to analyze, since the orientational average over random orientations of complexes factorizes into that of the interaction with the pump and the probe pulse, and the intrinsic electric quadrupole contributions to the TRCD signal average to zero for isotropic samples. Application of exciton theory to linear absorption and to linear circular dichroism spectra of squaraine polymers reveals the presence of two fractions of polymer conformations, a dominant helical conformation with close interpigment distances that are suggested to lead to short-range contributions to site energy shifts and excitonic couplings of the squaraine molecules, and a fraction of unfolded random coils. Theory demonstrates that TRCD spectra of selectively excited helices can resolve state populations that are practically invisible in TA spectroscopy due to the small dipole strength of these states. A qualitative interpretation of TRCD and TA spectra in the spectral window investigated experimentally is offered. The 1 ps time component found in these spectra is related to the slow part of exciton relaxation obtained between states of the helix in the low-energy half of the exciton manifold. The dominant 140 ps time constant reflects the decay of excited states to the electronic ground state.

4.
J Phys Chem Lett ; 14(33): 7556-7573, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37589504

RESUMO

Transient absorption and coherent two-dimensional spectroscopy are widely established methods for the investigation of ultrafast dynamics in quantum systems. Conventionally, they are interpreted in the framework of perturbation theory at the third order of interaction. Here, we discuss the potential of higher-(than-third-)order pump-probe and multidimensional spectroscopy to provide insight into excited multiparticle states and their dynamics. We focus on recent developments from our group. In particular, we demonstrate how phase cycling can be used in fluorescence-detected two-dimensional spectroscopy to isolate higher-order spectra that provide information about highly excited states such as the correlation of multiexciton states. We discuss coherently detected fifth-order 2D spectroscopy and its power to track exciton diffusion. Finally, we show how to extract higher-order signals even from ordinary pump-probe experiments, providing annihilation-free signals at high excitation densities and insight into multiexciton interactions.

5.
J Chem Phys ; 158(23)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37326161

RESUMO

Time-resolved spectroscopy is commonly used to study diverse phenomena in chemistry, biology, and physics. Pump-probe experiments and coherent two-dimensional (2D) spectroscopy have resolved site-to-site energy transfer, visualized electronic couplings, and much more. In both techniques, the lowest-order signal, in a perturbative expansion of the polarization, is of third order in the electric field, which we call a one-quantum (1Q) signal because in 2D spectroscopy it oscillates in the coherence time with the excitation frequency. There is also a two-quantum (2Q) signal that oscillates in the coherence time at twice the fundamental frequency and is fifth order in the electric field. We demonstrate that the appearance of the 2Q signal guarantees that the 1Q signal is contaminated by non-negligible fifth-order interactions. We derive an analytical connection between an nQ signal and (2n + 1)th-order contaminations of an rQ (with r < n) signal by studying Feynman diagrams of all contributions. We demonstrate that by performing partial integrations along the excitation axis in 2D spectra, we can obtain clean rQ signals free of higher-order artifacts. We exemplify the technique using optical 2D spectroscopy on squaraine oligomers, showing clean extraction of the third-order signal. We further demonstrate the analytical connection with higher-order pump-probe spectroscopy and compare both techniques experimentally. Our approach demonstrates the full power of higher-order pump-probe and 2D spectroscopy to investigate multi-particle interactions in coupled systems.


Assuntos
Eletrônica , Análise Espectral , Fatores de Tempo , Transferência de Energia
6.
J Phys Chem Lett ; 14(21): 4923-4932, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207316

RESUMO

We introduce fluorescence-detected pump-probe microscopy by combining a wavelength-tunable ultrafast laser with a confocal scanning fluorescence microscope, enabling access to the femtosecond time scale on the micrometer spatial scale. In addition, we obtain spectral information from Fourier transformation over excitation pulse-pair time delays. We demonstrate this new approach on a model system of a terrylene bisimide (TBI) dye embedded in a PMMA matrix and acquire the linear excitation spectrum as well as time-dependent pump-probe spectra simultaneously. We then push the technique toward single TBI molecules and analyze the statistical distribution of their excitation spectra. Furthermore, we demonstrate the ultrafast transient evolution of several individual molecules, highlighting their different behavior in contrast to the ensemble due to their individual local environment. By correlating the linear and nonlinear spectra, we assess the effect of the molecular environment on the excited-state energy.

7.
Nature ; 616(7956): 280-287, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973449

RESUMO

Quantum states depend on the coordinates of all their constituent particles, with essential multi-particle correlations. Time-resolved laser spectroscopy1 is widely used to probe the energies and dynamics of excited particles and quasiparticles such as electrons and holes2,3, excitons4-6, plasmons7, polaritons8 or phonons9. However, nonlinear signals from single- and multiple-particle excitations are all present simultaneously and cannot be disentangled without a priori knowledge of the system4,10. Here, we show that transient absorption-the most commonly used nonlinear spectroscopy-with N prescribed excitation intensities allows separation of the dynamics into N increasingly nonlinear contributions; in systems well-described by discrete excitations, these N contributions systematically report on zero to N excitations. We obtain clean single-particle dynamics even at high excitation intensities and can systematically increase the number of interacting particles, infer their interaction energies and reconstruct their dynamics, which are not measurable via conventional means. We extract single- and multiple-exciton dynamics in squaraine polymers11,12 and, contrary to common assumption6,13, we find that the excitons, on average, meet several times before annihilating. This surprising ability of excitons to survive encounters is important for efficient organic photovoltaics14,15. As we demonstrate on five diverse systems, our procedure is general, independent of the measured system or type of observed (quasi)particle and straightforward to implement. We envision future applicability in the probing of (quasi)particle interactions in such diverse areas as plasmonics7, Auger recombination2 and exciton correlations in quantum dots5,16,17, singlet fission18, exciton interactions in two-dimensional materials19 and in molecules20,21, carrier multiplication22, multiphonon scattering9 or polariton-polariton interaction8.

8.
J Chem Phys ; 157(4): 044201, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35922354

RESUMO

Although azulene's anomalous fluorescence originating from S2 rather than from S1 is a textbook example for the violation of Kasha's rule, an understanding of the underlying processes is still a subject of investigation. Here, we use action-based coherent two-dimensional electronic spectroscopy (2DES) to measure a single Liouville-space response pathway from S0 via S1 to the S2 state of azulene. We directly compare this sequential excitation in the liquid phase detecting S2 fluorescence and in a molecular beam detecting photoionized cations, using the S2 anomalous emission to our advantage. We complement the 2DES study with pump-probe measurements of S1 excitation dynamics, including vibrational relaxation and passage through a conical intersection. A direct comparison of the liquid and gas phase allows us to assess the effect of the solvent and the interplay of intra- and intermolecular energy relaxation.

9.
Nat Chem ; 14(2): 121-123, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35102327
10.
Phys Chem Chem Phys ; 23(34): 18393-18403, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34612380

RESUMO

The influence of oligosquaraine chain length on the energies and shape of absorption and emission bands and the exciton coherence length is studied in CHCl3 where the oligomers adopt a random coil structure. From the observed fluorescence band narrowing an effective coherence length of Ncoh = 2.5 was estimated for the nonamer. Applying a theoretical Frenkel exciton model the absorption and emission spectra were simulated which confirmed the experimental results. From the relative amplitude of the 00 peak to the vibronic shoulder the coherence length was estimated which yields a somewhat higher saturation value of Ncoh≈ 3 for the nonamer, which is in very good agreement with the theoretical amplitude ratio. The coherence length is much smaller than the geometrical length because the electronic delocalisation is reduced by structural disorder. Taking into account the energetic (diagonal) and structural (off-diagonal) disorder we observed a different influence on the absorption and fluorescence spectra. For the emission spectra, exciton delocalisation leads to a narrowing of the band caused by averaging over energetic disorder, but for the absorption band the spectra are broadened by excitonic splitting and structural disorder.

11.
Angew Chem Int Ed Engl ; 60(34): 18867-18875, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34152074

RESUMO

We introduce a new approach to transient spectroscopy, fluorescence-detected pump-probe (F-PP) spectroscopy, that overcomes several limitations of traditional PP. F-PP suppresses excited-state absorption, provides background-free detection, removes artifacts resulting from pump-pulse scattering, from non-resonant solvent response, or from coherent pulse overlap, and allows unique extraction of excited-state dynamics under certain conditions. Despite incoherent detection, time resolution of F-PP is given by the duration of the laser pulses, independent of the fluorescence lifetime. We describe the working principle of F-PP and provide its theoretical description. Then we illustrate specific features of F-PP by direct comparison with PP, theoretically and experimentally. For this purpose, we investigate, with both techniques, a molecular squaraine heterodimer, core-shell CdSe/ZnS quantum dots, and fluorescent protein mCherry. F-PP is broadly applicable to chemical systems in various environments and in different spectral regimes.

12.
J Chem Phys ; 154(15): 154202, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33887932

RESUMO

Exciton-exciton-interaction two-dimensional (EEI2D) spectroscopy is a fifth-order variant of 2D electronic spectroscopy. It can be used to probe biexciton dynamics in molecular systems and to observe exciton diffusion in extended systems such as polymers or light-harvesting complexes. The exciton transport strongly depends on the geometrical and energetic landscape and its perturbations. These can be of both local character, such as molecular orientation and energetic disorder, and long-range character, such as polymer kinks and structural domains. In the present theoretical work, we investigate the anisotropy in EEI2D spectroscopy. We introduce a general approach for how to calculate the anisotropy by using the response-function formalism in an efficient way. In numerical simulations, using a Frenkel exciton model with Redfield-theory dynamics, we demonstrate how the measurement of anisotropy in EEI2D spectroscopy can be used to identify various geometrical effects on exciton transport in dimers and polymers. Investigating a molecular heterodimer as an example, we demonstrate the utility of anisotropy in EEI2D spectroscopy for disentangling dynamic localization and annihilation. We further calculate the annihilation in extended systems such as conjugated polymers. In a polymer, a change in the anisotropy provides a unique signature for exciton transport between differently oriented sections. We analyze three types of geometry variations in polymers: a kink, varying geometric and energetic disorder, and different geometric domains. Our findings underline that employing anisotropy in EEI2D spectroscopy provides a way to distinguish between different geometries and can be used to obtain a better understanding of long-range exciton transport.

13.
J Chem Phys ; 153(14): 144204, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33086839

RESUMO

Two-dimensional electronic spectroscopy (2DES) can be realized in increasing nonlinear orders of interaction with the electric field, bringing new information about single- and multi-particle properties and dynamics. Furthermore, signals can be detected both coherently (C-2DES) and by fluorescence (F-2DES), with fundamental and practical differences. We directly compare the simultaneous measurements of four- and six-wave mixing C-2DES and F-2DES on an excitonic heterodimer of squaraine molecules. Spectral features are described in increasing orders of nonlinearity by an explicit excitonic model. We demonstrate that the four-wave-mixing spectra are sensitive to one-exciton energies, their delocalization and dynamics, while the six-wave-mixing spectra include information on bi-exciton and higher excited states including the state energies, electronic coupling, and exciton-exciton annihilation. We focus on the possibility to extract the dynamics arising from exciton-exciton interaction directly from the six-wave-mixing spectra. To this end, in analogy to previously demonstrated fifth-order coherently detected exciton-exciton-interaction 2DES (EEI2D spectroscopy), we introduce a sixth-order fluorescence-detected EEI2D spectroscopy variant.

14.
Phys Chem Chem Phys ; 22(37): 21222-21237, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32930273

RESUMO

Optical two-dimensional electronic spectroscopy (2DES) is now widely utilized to study excitonic structure and dynamics of a broad range of systems, from molecules to solid state. Besides the traditional experimental implementation using phase matching and coherent signal field detection, action-based approaches that detect incoherent signals such as fluorescence have been gaining popularity in recent years. While incoherent detection extends the range of applicability of 2DES, the observed spectra are not equivalent to the coherently detected ones. This raises questions about their interpretation and the sensitivity of the technique. Here we directly compare, both experimentally and theoretically, four-wave mixing coherently and fluorescence-detected 2DES of a series of squaraine dimers of increasing electronic coupling. All experiments are qualitatively well reproduced by a Frenkel exciton model with secular Redfield theory description of excitation dynamics. We contrast the spectral features and the sensitivities of both techniques with respect to exciton energies, delocalization, coherent and dissipative dynamics, and exciton-exciton annihilation. Discussing the fundamental and practical differences, we demonstrate the degree of complementarity of the techniques.

15.
Nat Commun ; 11(1): 1337, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165626

RESUMO

Intramolecular charge transfer processes play an important role in many biological, chemical and physical processes including photosynthesis, redox chemical reactions and electron transfer in molecular electronics. These charge transfer processes are frequently influenced by the dynamics of their molecular or atomic environments, and they are accompanied with energy dissipation into this environment. The detailed understanding of such processes is fundamental for their control and possible exploitation in future technological applications. Most of the experimental studies of the intramolecular charge transfer processes so far have been carried out using time-resolved optical spectroscopies on large molecular ensembles. This hampers detailed understanding of the charge transfer on the single molecular level. Here we build upon the recent progress in scanning probe microscopy, and demonstrate the control of mixed valence state. We report observation of single electron transfer between two ferrocene redox centers within a single molecule and the detection of energy dissipation associated with the single electron transfer.

16.
17.
Nat Commun ; 10(1): 4735, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628299

RESUMO

Coherent two-dimensional spectroscopy is a powerful tool for probing ultrafast quantum dynamics in complex systems. Several variants offer different types of information but typically require distinct beam geometries. Here we introduce population-based three-dimensional (3D) electronic spectroscopy and demonstrate the extraction of all fourth- and multiple sixth-order nonlinear signal contributions by employing 125-fold (1⨯5⨯5⨯5) phase cycling of a four-pulse sequence. Utilizing fluorescence detection and shot-to-shot pulse shaping in single-beam geometry, we obtain various 3D spectra of the dianion of TIPS-tetraazapentacene, a fluorophore with limited stability at ambient conditions. From this, we recover previously unknown characteristics of its electronic two-photon state. Rephasing and nonrephasing sixth-order contributions are measured without additional phasing that hampered previous attempts using noncollinear geometries. We systematically resolve all nonlinear signals from the same dataset that can be acquired in 8 min. The approach is generalizable to other incoherent observables such as external photoelectrons, photocurrents, or photoions.

18.
Nat Commun ; 10(1): 4615, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601795

RESUMO

Unraveling the nature of energy transport in multi-chromophoric photosynthetic complexes is essential to extract valuable design blueprints for light-harvesting applications. Long-range exciton transport in such systems is facilitated by a combination of delocalized excitation wavefunctions (excitons) and exciton diffusion. The unambiguous identification of the exciton transport is intrinsically challenging due to the system's sheer complexity. Here we address this challenge by employing a spectroscopic lab-on-a-chip approach: ultrafast coherent two-dimensional spectroscopy and microfluidics working in tandem with theoretical modeling. We show that at low excitation fluences, the outer layer acts as an exciton antenna supplying excitons to the inner tube, while under high excitation fluences the former converts its functionality into an exciton annihilator which depletes the exciton population prior to any exciton transfer. Our findings shed light on the excitonic trajectories across different sub-units of a multi-layered artificial light-harvesting complex and underpin their great potential for directional excitation energy transport.

19.
Nanoscale ; 11(32): 15139-15146, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31372623

RESUMO

Plasmonic coupling of metallic nanoparticles and adjacent pigments can dramatically increase the brightness of the pigments due to the enhanced local electric field. Here, we demonstrate that the fluorescence brightness of a single plant light-harvesting complex (LHCII) can be significantly enhanced when coupled to a gold nanorod (AuNR). The AuNRs utilized in this study were prepared via chemical reactions, and the hybrid system was constructed using a simple and economical spin-assisted layer-by-layer technique. Enhancement of fluorescence brightness of up to 240-fold was observed, accompanied by a 109-fold decrease in the average (amplitude-weighted) fluorescence lifetime from approximately 3.5 ns down to 32 ps, corresponding to an excitation enhancement of 63-fold and emission enhancement of up to 3.8-fold. This large enhancement is due to the strong spectral overlap of the longitudinal localized surface plasmon resonance of the utilized AuNRs and the absorption or emission bands of LHCII. This study provides an inexpensive strategy to explore the fluorescence dynamics of weakly emitting photosynthetic light-harvesting complexes at the single molecule level.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Proteínas de Plantas/química , Plantas/metabolismo , Ouro/química , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Microscopia Eletrônica de Transmissão , Nanotubos/química , Proteínas de Plantas/metabolismo , Espectrofotometria , Ressonância de Plasmônio de Superfície
20.
Chem Sci ; 11(2): 456-466, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34084345

RESUMO

Exciton transport and exciton-exciton interactions in molecular aggregates and polymers are of great importance in natural photosynthesis, organic electronics, and related areas of research. Both the experimental observation and theoretical description of these processes across time and length scales, including the transition from the initial wavelike motion to the following long-range exciton transport, are highly challenging. Therefore, while exciton dynamics at small scales are often treated explicitly, long-range exciton transport is typically described phenomenologically by normal diffusion. In this work, we study the transition from wavelike to diffusive motion of interacting exciton pairs in squaraine copolymers of varying length. To this end we use a combination of the recently introduced exciton-exciton-interaction two-dimensional (EEI2D) electronic spectroscopy and microscopic theoretical modelling. As we show by comparison with the model, the experimentally observed kinetics include three phases, wavelike motion dominated by immediate exciton-exciton annihilation (10-100 fs), sub-diffusive behavior (0.1-10 ps), and excitation relaxation (0.01-1 ns). We demonstrate that the key quantity for the transition from wavelike to diffusive dynamics is the exciton delocalization length relative to the length of the polymer: while in short polymers wavelike motion of rapidly annihilating excitons dominates, in long polymers the excitons become locally trapped and exhibit sub-diffusive behavior. Our findings indicate that exciton transport through conjugated systems emerging from the excitonic structure is generally not governed by normal diffusion. Instead, to characterize the material transport properties, the diffusion presence and character should be determined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...