Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 12(11)2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31636086

RESUMO

Endoplasmic reticulum (ER) stress is a major pathology encountered after hypoxic-ischemic (HI) injury. Accumulation of unfolded proteins triggers the unfolded protein response (UPR), resulting in the activation of pro-apoptotic cascades that lead to cell death. Here, we identified Bax inhibitor 1 (BI-1), an evolutionarily conserved protein encoded by the transmembrane BAX inhibitor motif-containing 6 (TMBIM6) gene, as a novel modulator of ER-stress-induced apoptosis after HI brain injury in a neonatal rat pup. The main objective of our study was to overexpress BI-1, via viral-mediated gene delivery of human adenoviral-TMBIM6 (Ad-TMBIM6) vector, to investigate its anti-apoptotic effects as well as to elucidate its signaling pathways in an in vivo neonatal HI rat model and in vitro oxygen-glucose deprivation (OGD) model. Ten-day-old unsexed Sprague Dawley rat pups underwent right common carotid artery ligation followed by 1.5 h of hypoxia. Rat pups injected with Ad-TMBIM6 vector, 48 h pre-HI, showed a reduction in relative infarcted area size, attenuated neuronal degeneration and improved long-term neurological outcomes. Furthermore, silencing of BI-1 or further activating the IRE1α branch of the UPR, using a CRISPR activation plasmid, was shown to reverse the protective effects of BI-1. Based on our in vivo and in vitro data, the protective effects of BI-1 are mediated via inhibition of IRE1α signaling and in part via inhibition of the second stress sensor receptor, PERK. Overall, this study showed a novel role for BI-1 and ER stress in the pathophysiology of HI and could provide a basis for BI-1 as a potential therapeutic target.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Apoptose , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/fisiologia , Hipóxia-Isquemia Encefálica/etiologia , Proteínas de Membrana/fisiologia , Adenoviridae/genética , Animais , Animais Recém-Nascidos , Proteínas Reguladoras de Apoptose/genética , Endorribonucleases/fisiologia , Vetores Genéticos , Hipóxia-Isquemia Encefálica/patologia , Aprendizagem em Labirinto , Proteínas de Membrana/genética , Complexos Multienzimáticos/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Transcrição CHOP/fisiologia , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box/fisiologia
2.
Neuropharmacology ; 158: 107727, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31356825

RESUMO

Apoptosis following hypoxic-ischemic injury to the brain plays a major role in neuronal cell death. The neonatal brain is more susceptible to injury as the cortical neurons are immature and there are lower levels of antioxidants. Slit2, an extracellular matrix protein, has been shown to be neuroprotective in various models of neurological diseases. However, there is no information about the role of Slit2 in neonatal hypoxia-ischemia. In this study, we evaluated the effect of Slit2 and its receptor Robo1 in a rat model with neonatal HIE. 10-day old rat pups were used to create the neonatal HIE model. The right common carotid artery was ligated followed by 2.5 h of hypoxia. Recombinant Slit2 was administered intranasally 1 h post HI, recombinant Robo1 was used as a decoy receptor and administered intranasally 1h before HI and srGAP1-siRNA was administered intracerebroventricularly 24 h before HI. Brain infarct area measurement, short-term and long-term neurological function tests, Western blot, immunofluorescence staining, Fluoro-Jade C staining, Nissl staining and TUNEL staining were the assessments done following drug administration. Recombinant Slit2 administration reduced neuronal apoptosis and neurological deficits after neonatal HIE which were reversed by co-administration of recombinant Robo1 and srGAP1-siRNA administration. Recombinant Slit2 showed improved outcomes possibly via the robo1-srGAP1 pathway which mediated the inhibition of RhoA. In this study, the results suggest that Slit2 may help in attenuation of apoptosis and could be a therapeutic agent for treatment of neonatal hypoxic ischemic encephalopathy.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Ativadoras de GTPase/efeitos dos fármacos , Hipóxia-Isquemia Encefálica/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/farmacologia , Neurônios/efeitos dos fármacos , Receptores Imunológicos/efeitos dos fármacos , Administração Intranasal , Animais , Animais Recém-Nascidos , Proteínas Ativadoras de GTPase/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Marcação In Situ das Extremidades Cortadas , Injeções Intraventriculares , Proteínas do Tecido Nervoso/metabolismo , RNA Interferente Pequeno , Ratos , Receptores Imunológicos/metabolismo , Proteínas Recombinantes , Transdução de Sinais , Proteínas rho de Ligação ao GTP/efeitos dos fármacos , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas Roundabout
3.
J Cereb Blood Flow Metab ; 39(2): 272-284, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-28825325

RESUMO

The role of vitamin D3 (VitD3) in the upregulation of osteopontin (OPN) and eNOS in the endothelium of cerebral arteries after subarachnoid hemorrhage (SAH) is investigated. The endovascular perforation SAH model in Sprague-Dawley rats ( n = 103) was used. The VitD3 pretreatment (30 ng/kg) increased endogenous OPN and eNOS expression in cerebral arteries compared with naïve rats ( n = 5 per group). Neurobehavioral scores were significantly improved in Pre-SAH+VitD3 group compared with the SAH group. The effects of VitD3 were attenuated by intracerebroventricular (i.c.v) injections of siRNA for the vitamin D receptor (VDR) and OPN in Pre-SAH+VitD3+VDR siRNA and Pre-SAH+VitD3+OPN siRNA rats, respectively ( n = 5 per group). The significant increase of VDR, OPN and decrease of C44 splicing in the cerebral arteries of Pre-SAH+VitD3 rats lead to an increase in basilar artery lumen. The increase in VDR expression led to an upregulation and phosphorylation of AMPK and eNOS, especially dimer form, in endothelium of cerebral artery. The results provide that VitD3 pretreatment attenuates cerebral artery remodeling and vasospasm through the upregulation of OPN and phosphorylation of AMPK (p-AMPK) and eNOS (p-eNOS) at Ser1177-Dimer in the cerebral arteries. Vitamin D may be a useful new preventive and therapeutic strategy against cerebral artery remodeling in stroke patients.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Artérias Cerebrais/metabolismo , Colecalciferol/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Multimerização Proteica/efeitos dos fármacos , Receptores de Calcitriol/biossíntese , Hemorragia Subaracnóidea/metabolismo , Remodelação Vascular/efeitos dos fármacos , Animais , Artérias Cerebrais/patologia , Artérias Cerebrais/fisiopatologia , Masculino , Osteopontina/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/patologia , Hemorragia Subaracnóidea/fisiopatologia , Regulação para Cima/efeitos dos fármacos , Vasoespasmo Intracraniano/metabolismo , Vasoespasmo Intracraniano/patologia , Vasoespasmo Intracraniano/fisiopatologia
4.
Neuropharmacology ; 140: 150-161, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30086290

RESUMO

Activation of peroxisome proliferator-activated receptor beta/delta (PPAR-ß/δ), a nuclear receptor acting as a transcription factor, was shown to be protective in various models of neurological diseases. However, there is no information about the role of PPAR-ß/δ as well as its molecular mechanisms in neonatal hypoxia-ischemia (HI). In the present study, we hypothesized that PPAR-ß/δ agonist GW0742 can activate miR-17-5p, consequently inhibiting TXNIP and ASK1/p38 pathway leading to attenuation of apoptosis. Ten-day-old rat pups were subjected to right common carotid artery ligation followed by 2.5 h hypoxia. GW0742 was administered intranasally 1 and 24 h post HI. PPAR-ß/δ receptor antagonist GSK3787 was administered intranasally 1 h before and 24 h after HI, antimir-17-5p and TXNIP CRISPR activation plasmid were administered intracerebroventricularly 24 and 48 h before HI, respectively. Brain infarct area measurement, neurological function tests, western blot, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), Fluoro-Jade C and immunofluorescence staining were conducted. GW0742 reduced brain infarct area, brain atrophy, apoptosis, and improved neurological function at 72 h and 4 weeks post HI. Furthermore, GW0742 treatment increased PPAR-ß/δ nuclear expression and miR-17-5p level and reduced TXNIP in ipsilateral hemisphere after HI, resulting in inhibition of ASK1/p38 pathway and attenuation of apoptosis. Inhibition of PPAR-ß/δ receptor and miR-17-5p and activation of TXNIP reversed the protective effects. For the first time, we provide evidence that intranasal administration of PPAR-ß/δ agonist GW0742 attenuated neuronal apoptosis at least in part via PPAR-ß/δ/miR-17/TXNIP pathway. GW0742 could represent a therapeutic target for treatment of neonatal hypoxic ischemic encephalopathy (HIE).


Assuntos
Apoptose/fisiologia , Proteínas de Transporte/fisiologia , Hipóxia-Isquemia Encefálica/fisiopatologia , MicroRNAs/fisiologia , PPAR delta/fisiologia , PPAR beta/fisiologia , Animais , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Infarto Cerebral/tratamento farmacológico , Infarto Cerebral/patologia , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Neurônios/patologia , PPAR delta/agonistas , PPAR delta/antagonistas & inibidores , PPAR delta/biossíntese , PPAR beta/agonistas , PPAR beta/antagonistas & inibidores , PPAR beta/biossíntese , Ratos , Transdução de Sinais/fisiologia , Sulfonas/farmacologia , Tiazóis/farmacologia , Tiazóis/uso terapêutico
5.
Stroke ; 49(1): 175-183, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29273596

RESUMO

BACKGROUND AND PURPOSE: The NLRP3 (nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3) inflammasome is a crucial component of the inflammatory response in early brain injury after subarachnoid hemorrhage (SAH). In this study, we investigated a role of dihydrolipoic acid (DHLA) in lysosomal rupture, NLRP3 activation, and determined the underlying pathway. METHODS: SAH was induced by endovascular perforation in male Sprague-Dawley rats. DHLA was administered intraperitoneally 1 hour after SAH. Small interfering RNA for lysosome-associated membrane protein-1 and CaMKIIα (calcium/calmodulin-dependent protein kinase II α) was administered through intracerebroventricular 48 hours before SAH induction. SAH grade evaluation, short- and long-term neurological function testing, Western blot, and immunofluorescence staining experiments were performed. RESULTS: DHLA treatment increased the expression of lysosome-associated membrane protein-1 and decreased phosphorylated CaMKIIα and NLRP3 inflammasome, thereby alleviating neurological deficits after SAH. Lysosome-associated membrane protein-1 small interfering RNA abolished the neuroprotective effects of DHLA and increased the level of phosphorylated CaMKIIα, p-TAK1 (phosphorylated transforming growth factor-ß-activated kinase), p-JNK (phosphorylated c-Jun-N-terminal kinase), and NLRP3 inflammasome. CaMKIIα small interfering RNA downregulated the expression of p-TAK1, p-JNK, and NLRP3 and improved the neurobehavior after SAH. CONCLUSIONS: DHLA treatment improved neurofunction and alleviated inflammation through the lysosome-associated membrane protein-1/CaMKII/TAK1 pathway in early brain injury after SAH. DHLA may provide a promising treatment to alleviate early brain injury after SAH.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hemorragia Subaracnóidea/tratamento farmacológico , Ácido Tióctico/análogos & derivados , Animais , Lisossomos/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/patologia , Ácido Tióctico/farmacologia
6.
Exp Neurol ; 301(Pt A): 70-80, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29274721

RESUMO

Hypoxic Ischemic Encephalopathy (HIE) is an injury caused to the brain due to prolonged lack of oxygen and blood supply which results in death or long-term disabilities. The main aim of this study was to investigate the role of Cytosine-phospho-guanine oligodeoxynucleotide (CpG-ODN) in autophagy after HIE. Ten-day old (P10) rat pups underwent right common carotid artery ligation followed by 2.5h of hypoxia as previously described by Rice-Vannucci. At 1h post HIE, rats were intranasally administered with recombinant CpG-ODN. Time-course expression levels of endogenous key proteins, TLR9, pAMPK/AMPK, LC3II/I, and LAMP1 involved in CpG-ODN's protective effects were measured using western blot. Short (48h) and long (4w) term neurobehavior studies were performed using righting reflex, negative geotaxis, water maze, foot fault and Rota rod tests. Brain samples were collected after long term for histological analysis. Furthermore, to elucidate the pathway via which CpG-ODN confers protection, TLR9 and AMPK inhibitors were used. Time course results showed that the expression of TLR9, pAMPK/AMPK, LC3II/I, LAMP1 increased after HIE. Neurobehavioral studies showed that HIE induced a significant delay in development and resulted in cognitive and motor function deficits. However, CpG-ODN ameliorated HIE-induced outcomes and improved long term neurological deficits. In addition, CpG-ODN increased expression of pAMPK/AMPK, p-ULK1/ULK1, P-AMBRA1/AMBRA1, LC3II/I and LAMP1 while inhibition of TLR9 and AMPK reversed those effects. In summary, CpG-ODN increased HIE-induced autophagy and improved short and long term neurobehavioral outcomes which may be mediated by the TLR9/pAMPK signaling pathway after HIE.


Assuntos
Autofagia/efeitos dos fármacos , Hipóxia-Isquemia Encefálica/patologia , Fármacos Neuroprotetores/farmacologia , Oligodesoxirribonucleotídeos/farmacologia , Adenilato Quinase/metabolismo , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Receptor Toll-Like 9/metabolismo
7.
Int J Mol Sci ; 18(1)2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-28085069

RESUMO

Cardiac arrest (CA) is a well-known cause of global brain ischemia. After CA and subsequent loss of consciousness, oxygen tension starts to decline and leads to a series of cellular changes that will lead to cellular death, if not reversed immediately, with brain edema as a result. The electroencephalographic activity starts to change as well. Although increased intracranial pressure (ICP) is not a direct result of cardiac arrest, it can still occur due to hypoxic-ischemic encephalopathy induced changes in brain tissue, and is a measure of brain edema after CA and ischemic brain injury. In this review, we will discuss the pathophysiology of brain edema after CA, some available techniques, and methods to monitor brain oxygen, electroencephalography (EEG), ICP (intracranial pressure), and microdialysis on its measurement of cerebral metabolism and its usefulness both in clinical practice and possible basic science research in development. With this review, we hope to gain knowledge of the more personalized information about patient status and specifics of their brain injury, and thus facilitating the physicians' decision making in terms of which treatments to pursue.


Assuntos
Lesões Encefálicas/diagnóstico , Lesões Encefálicas/etiologia , Parada Cardíaca/complicações , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/fisiopatologia , Eletroencefalografia , Potenciais Somatossensoriais Evocados , Humanos , Pressão Intracraniana , Microdiálise , Monitorização Fisiológica , Neuroimagem , Consumo de Oxigênio
8.
ASN Neuro ; 8(5)2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27683877

RESUMO

Neonatal hypoxic-ischemic encephalopathy (HIE) is an injury that often leads to detrimental neurological deficits. Currently, there are no established therapies for HIE and it is critical to develop treatments that provide protection after HIE. The objective of this study was to investigate the ability of interferon beta (IFNß) to provide neuroprotection and reduce apoptosis after HIE. Postnatal Day 10 rat pups were subjected to unilateral carotid artery ligation followed by 2.5 hr of exposure to hypoxia (8% O2). Intranasal administration of human recombinant IFNß occurred 2 hr after HIE and infarct volume, body weight, neurobehavioral tests, histology, immunohistochemistry, brain water content, blood-brain barrier permeability, enzyme-linked immunosorbent assay, and Western blot were all used to evaluate various parameters. The results showed that both IFNß and the Type 1 interferon receptor expression decreases after HIE. Intranasal administration of human recombinant IFNß was able to be detected in the central nervous system and was able to reduce brain infarction volumes and improve neurological behavior tests 24 hr after HIE. Western blot analysis also revealed that human recombinant IFNß treatment stimulated Stat3 and Bcl-2 expression leading to a decrease in cleaved caspase-3 expression after HIE. Positive Fluoro-Jade C staining also demonstrated that IFNß treatment was able to decrease neuronal apoptosis. Furthermore, the beneficial effects of IFNß treatment were reversed when a Stat3 inhibitor was applied. Also an intraperitoneal administration of human recombinant IFNß into the systemic compartment was unable to confer the same protective effects as intranasal IFNß treatment.

9.
Acta Neurochir Suppl ; 121: 111-4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26463932

RESUMO

The leading cause of morbidity and mortality in infants is hypoxia-ischemia (HI). The current therapies for HI have limited success, in part due to a lack of understanding of HI pathophysiology and underlying mechanisms. Herein, a neonatal rat model of HI was used to examine the changes in brain swelling and infarct volume over 4 days after HI. Forty-four P10 rat pups were sacrificed at 2, 3, or 4 days post-HI. After sacrifice, the brains were removed, sliced, and stained with TTC (2,3,5-triphenyl-2H-tetrazolium chloride). Images of TTC-stained brains were used for measurement of the ipsilateral hemisphere brain volumes and infarct volumes, calculated using standard equations. The hemispheric brain volumes of HI animals in all groups was lower than that of sham animals and decreased as the post-HI sacrifice time increased. The infarct volume of HI animals was larger than that of sham animals. Infarct volumes tended to decrease over the days post-HI. The change in infarct volume is likely the result of a combination of brain growth and repair mechanisms. However, changes in the hemispheric brain volume may include tissue growth and repair mechanism, so also may be a limitation of the current algorithm used for calculating ipsilateral hemisphere brain volume.


Assuntos
Edema Encefálico/patologia , Infarto Encefálico/patologia , Encéfalo/patologia , Hipóxia-Isquemia Encefálica/patologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Progressão da Doença , Tamanho do Órgão , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
10.
Acta Neurochir Suppl ; 121: 217-20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26463952

RESUMO

Germinal matrix hemorrhage (GMH) is the most common and devastating neurological problem of premature infants. Current treatment is largely ineffective and GMH has been nonpreventable. Osteopontin (OPN) is an endogenous protein that has been shown to be neuroprotective, however, it has not been tested in GMH. P7 neonatal rats were subjected to stereotactic ganglionic eminence collagenase infusion. Groups were as follows: (1) sham, (2) GMH + vehicle, (3) GMH + intranasal OPN. Seventy-two hours later, the animals were evaluated using righting reflex, blood-brain barrier (BBB) permeability by Evans blue dye leakage, brain water content, and hemoglobin assay. Intranasal OPN improved outcomes after GMH by attenuation of brain swelling, BBB function, re-bleeding, and neurological outcomes. OPN may play an important role in enhancing neuroprotective brain signaling following GMH. These observed effects may offer novel possibilities for therapy in this patient population.


Assuntos
Comportamento Animal/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Hemorragias Intracranianas/metabolismo , Osteopontina/farmacologia , Animais , Animais Recém-Nascidos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Hemoglobinas/efeitos dos fármacos , Hemoglobinas/metabolismo , Hemorragias Intracranianas/complicações , Hemorragias Intracranianas/patologia , Hemorragias Intracranianas/fisiopatologia , Ratos , Ratos Sprague-Dawley
11.
Acta Neurochir Suppl ; 121: 263-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26463959

RESUMO

Osteopontin (OPN) is a neuroprotective molecule that is upregulated following rodent neonatal hypoxic-ischemic (nHI) brain injury. Because Rac1 is a regulator of blood-brain barrier (BBB) stability, we hypothesized a role for this in OPN signaling. nHI was induced by unilateral ligation of the right carotid artery followed by hypoxia (8 % oxygen for 2 h) in P10 Sprague-Dawley rat pups. Intranasal (iN) OPN was administered at 1 h post-nHI. Groups consisted of: (1) Sham, (2) Vehicle, (3) OPN, and (4) OPN + Rac1 inhibitor (NSC23766). Evans blue dye extravasation (BBB permeability) was quantified 24 h post-nHI, and brain edema at 48 h. Increased BBB permeability and brain edema following nHI was ameliorated in the OPN treatment group. However, those rat pups receiving OPN co-treatment with the Rac1 inhibitor experienced no improvement compared with vehicle. OPN protects the BBB following nHI, and this was reversed by Rac1 inhibitor (NSC23766).


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Edema Encefálico/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Fármacos Neuroprotetores/farmacologia , Osteopontina/farmacologia , Proteínas rac1 de Ligação ao GTP/efeitos dos fármacos , Aminoquinolinas/farmacologia , Animais , Animais Recém-Nascidos , Barreira Hematoencefálica/metabolismo , Artérias Carótidas/cirurgia , Ligadura , Permeabilidade , Pirimidinas/farmacologia , Ratos Sprague-Dawley , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/metabolismo
12.
Medicine (Baltimore) ; 94(4): e497, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25634201

RESUMO

Spontaneous hemorrhage is rarely associated with hemangioblastomas. Intratumoral hemorrhage occurring in cerebellar hemangioblastomas is more rare. A 25-year-old man was admitted to our hospital with headache. We found a round cystic lesion with solid part in the right cerebellum. The lesion was resected. The final pathological diagnosis was hemangioblastomas. The radiological features of this case were similar to normal hemangioblastomas, whereas our histological examination showed the occurrence of the intratumoral hemorrhage. If the hemangioblastoma ruptures in our case, the outcome of the patient will be worse. It is difficult to identify the intratumoral hemorrhage of hemangioblastomas and quite dangerous if it is diagnosed late. Diagnosing an intratumoral hemorrhage of hemangioblastomas still needs a further discussion. Genetic screening may help us make an early diagnosis. Furthermore, the mechanism about intratumoral hemorrhage of hemangioblastomas remains unknown. The mutation of D6Mit135 gene on chromosome 6 may be responsible for the vascular dilation and hemorrhage induction in the hemangioblastomas. Tumor size, upregulation of vascular endothelial growth factor, spinalradicular location, and solid type are also factors relating to the hemorrhage of hemangioblastomas. The purpose of reporting our case is 2-fold: to remind clinicians to consider the possibility of internal hemorrhaging while diagnosing this disease, and provide a starting point to discuss mechanisms regarding the intratumoral hemorrhage of hemangioblastomas.


Assuntos
Neoplasias Cerebelares/patologia , Hemangioblastoma/patologia , Hemorragia/etiologia , Adulto , Neoplasias Cerebelares/cirurgia , Cefaleia/etiologia , Hemangioblastoma/cirurgia , Hemorragia/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino
13.
BMC Neurol ; 14: 251, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25527141

RESUMO

BACKGROUNDS: While previous meta-analysis have investigated the efficacy of cilostazol in the secondary prevention of ischemic stroke, they were criticized for their methodology, which confused the acute and chronic phases of stroke. We present a new systematic review, which differs from previous meta-analysis by distinguishing between the different phases of stroke, and includes two new randomized, controlled trials (RCTs). METHODS: All RCTs investigating the effect of cilostazol on secondary prevention of ischemic stroke were obtained. Outcomes were analyzed by Review Manager, including recurrence of cerebral infarction (ROCI), hemorrhage stroke or subarachnoid hemorrhage (HSSH), all-cause death (ACD), and modified Rankin Scale score (mRS). The Grading of Recommendations Assessment, Development and Evaluation (GRADE) assessed the quality of the evidence. RESULTS: 5491 patients from six studies were included in the current study. In secondary prevention of ischemic stroke in chronic phase, cilostazol was associated with a 47% reduction in ROCI (relative risk [RR] 0.53, 95% confidence interval [CI] 0.34 to 0.81, p = 0.003), while no significant difference in HSSH and ACD compared with placebo; and 71% reduction in HSSH (RR 0.29, 95% CI 0.15 to 0.56, p = 0.0002) compared with aspirin, but not in ROCI and ACD. In the secondary prevention of ischemic stroke in acute phase, cilostazol did not show any effect in the ROCI, HSSH, ACD and mRS compared to placebo or aspirin. The quality of the evidence from chronic phase was high or moderate, and those from acute phase were moderate or low when analyzed by GRADE approach. CONCLUSION: Cilostazol provided a protective effect in the secondary prevention of the chronic phase of ischemic stroke.


Assuntos
Povo Asiático , Aspirina/uso terapêutico , Infarto Cerebral/prevenção & controle , Inibidores da Agregação Plaquetária/uso terapêutico , Prevenção Secundária , Tetrazóis/uso terapêutico , Doença Aguda , Hemorragia Cerebral/induzido quimicamente , Doença Crônica , Cilostazol , Humanos , Acidente Vascular Cerebral/prevenção & controle , Hemorragia Subaracnóidea/induzido quimicamente , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...