Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mass Spectrom ; 59(6): e5034, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38726698

RESUMO

Glycosylation is an incredibly common and diverse post-translational modification that contributes widely to cellular health and disease. Mass spectrometry is the premier technique to study glycoproteins; however, glycoproteomics has lagged behind traditional proteomics due to the challenges associated with studying glycosylation. For instance, glycans dissociate by collision-based fragmentation, thus necessitating electron-based fragmentation for site-localization. The vast glycan heterogeneity leads to lower overall abundance of each glycopeptide, and often, ion suppression is observed. One of the biggest issues facing glycoproteomics is the lack of reliable software for analysis, which necessitates manual validation and serves as a massive bottleneck in data processing. Here, I will discuss each of these challenges and some ways in which the field is attempting to address them, along with perspectives on how I believe we should move forward.


Assuntos
Glicômica , Glicoproteínas , Espectrometria de Massas , Proteômica , Proteômica/métodos , Glicômica/métodos , Espectrometria de Massas/métodos , Glicoproteínas/análise , Glicoproteínas/química , Humanos , Glicosilação , Polissacarídeos/análise , Polissacarídeos/química , Glicopeptídeos/análise , Glicopeptídeos/química , Software , Processamento de Proteína Pós-Traducional , Animais
2.
Brain Behav Immun ; 119: 665-680, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579936

RESUMO

Depression is a prevalent psychological condition with limited treatment options. While its etiology is multifactorial, both chronic stress and changes in microbiome composition are associated with disease pathology. Stress is known to induce microbiome dysbiosis, defined here as a change in microbial composition associated with a pathological condition. This state of dysbiosis is known to feedback on depressive symptoms. While studies have demonstrated that targeted restoration of the microbiome can alleviate depressive-like symptoms in mice, translating these findings to human patients has proven challenging due to the complexity of the human microbiome. As such, there is an urgent need to identify factors upstream of microbial dysbiosis. Here we investigate the role of mucin 13 as an upstream mediator of microbiome composition changes in the context of stress. Using a model of chronic stress, we show that the glycocalyx protein, mucin 13, is selectively reduced after psychological stress exposure. We further demonstrate that the reduction of Muc13 is mediated by the Hnf4 transcription factor family. Finally, we determine that deleting Muc13 is sufficient to drive microbiome shifts and despair behaviors. These findings shed light on the mechanisms behind stress-induced microbial changes and reveal a novel regulator of mucin 13 expression.

3.
Anal Chem ; 96(13): 5242-5250, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38512228

RESUMO

Mucin-domain glycoproteins are densely O-glycosylated and play critical roles in a host of healthy and disease-driven biological functions. Previously, we developed a mucin-selective enrichment strategy by employing a catalytically inactive mucinase (StcE) conjugated to a solid support. While this method was effective, it suffered from low throughput and high sample requirements. Further, the elution step required boiling in SDS, thus necessitating an in-gel digest with trypsin. Here, we introduce innovative elution conditions amenable to mucinase digestion and downstream analysis using mass spectrometry. This increased throughput and lowered sample input while maintaining mucin selectivity and enhancing the glycopeptide signal. We then benchmarked this technique against different O-glycan binding moieties for their ability to enrich mucins from various cell lines and human serum. Overall, the new method outperformed our previous procedure and all of the other enrichment techniques tested. This allowed for the effective isolation of more mucin-domain glycoproteins, resulting in a high number of O-glycopeptides, thus enhancing our ability to analyze the mucinome.


Assuntos
Glicoproteínas , Mucinas , Humanos , Mucinas/química , Espectrometria de Massas , Glicosilação , Glicopeptídeos/química
4.
Nat Biotechnol ; 42(4): 597-607, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37537499

RESUMO

Targeted protein degradation is an emerging strategy for the elimination of classically undruggable proteins. Here, to expand the landscape of targetable substrates, we designed degraders that achieve substrate selectivity via recognition of a discrete peptide and glycan motif and achieve cell-type selectivity via antigen-driven cell-surface binding. We applied this approach to mucins, O-glycosylated proteins that drive cancer progression through biophysical and immunological mechanisms. Engineering of a bacterial mucin-selective protease yielded a variant for fusion to a cancer antigen-binding nanobody. The resulting conjugate selectively degraded mucins on cancer cells, promoted cell death in culture models of mucin-driven growth and survival, and reduced tumor growth in mouse models of breast cancer progression. This work establishes a blueprint for the development of biologics that degrade specific protein glycoforms on target cells.


Assuntos
Mucinas , Neoplasias , Animais , Camundongos , Mucinas/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise
5.
Nat Commun ; 14(1): 6169, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794035

RESUMO

Mucin-domain glycoproteins are densely O-glycosylated and play critical roles in a host of biological functions. In particular, the T cell immunoglobulin and mucin-domain containing family of proteins (TIM-1, -3, -4) decorate immune cells and act as key regulators in cellular immunity. However, their dense O-glycosylation remains enigmatic, primarily due to the challenges associated with studying mucin domains. Here, we demonstrate that the mucinase SmE has a unique ability to cleave at residues bearing very complex glycans. SmE enables improved mass spectrometric analysis of several mucins, including the entire TIM family. With this information in-hand, we perform molecular dynamics (MD) simulations of TIM-3 and -4 to understand how glycosylation affects structural features of these proteins. Finally, we use these models to investigate the functional relevance of glycosylation for TIM-3 function and ligand binding. Overall, we present a powerful workflow to better understand the detailed molecular structures and functions of the mucinome.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Mucinas , Mucinas/metabolismo , Polissacarídeo-Liases , Polissacarídeos/química
6.
JACS Au ; 3(9): 2498-2509, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37772174

RESUMO

High-field asymmetric waveform ion mobility spectrometry (FAIMS) separates glycopeptides in the gas phase prior to mass spectrometry (MS) analysis, thus offering the potential to analyze glycopeptides without prior enrichment. Several studies have demonstrated the ability of FAIMS to enhance glycopeptide detection but have primarily focused on N-glycosylation. Here, we evaluated FAIMS for O-glycoprotein and mucin-domain glycoprotein analysis using samples of varying complexity. We demonstrated that FAIMS was useful in increasingly complex samples as it allowed for the identification of more glycosylated species. However, during our analyses, we observed a phenomenon called "in FAIMS fragmentation" (IFF) akin to in source fragmentation but occurring during FAIMS separation. FAIMS experiments showed a 2- to 5-fold increase in spectral matches from IFF compared with control experiments. These results were also replicated in previously published data, indicating that this is likely a systemic occurrence when using FAIMS. Our study highlights that although there are potential benefits to using FAIMS separation, caution must be exercised in data analysis because of prevalent IFF, which may limit its applicability in the broader field of O-glycoproteomics.

7.
J Biol Chem ; 299(6): 104755, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37116708

RESUMO

The colony-stimulating factor 3 receptor (CSF3R) controls the growth of neutrophils, the most abundant type of white blood cell. In healthy neutrophils, signaling is dependent on CSF3R binding to its ligand, CSF3. A single amino acid mutation in CSF3R, T618I, instead allows for constitutive, ligand-independent cell growth and leads to a rare type of cancer called chronic neutrophilic leukemia. However, the disease mechanism is not well understood. Here, we investigated why this threonine to isoleucine substitution is the predominant mutation in chronic neutrophilic leukemia and how it leads to uncontrolled neutrophil growth. Using protein domain mapping, we demonstrated that the single CSF3R domain containing residue 618 is sufficient for ligand-independent activity. We then applied an unbiased mutational screening strategy focused on this domain and found that activating mutations are enriched at sites normally occupied by asparagine, threonine, and serine residues-the three amino acids which are commonly glycosylated. We confirmed glycosylation at multiple CSF3R residues by mass spectrometry, including the presence of GalNAc and Gal-GalNAc glycans at WT threonine 618. Using the same approach applied to other cell surface receptors, we identified an activating mutation, S489F, in the interleukin-31 receptor alpha chain. Combined, these results suggest a role for glycosylated hotspot residues in regulating receptor signaling, mutation of which can lead to ligand-independent, uncontrolled activity and human disease.


Assuntos
Leucemia Neutrofílica Crônica , Humanos , Leucemia Neutrofílica Crônica/diagnóstico , Leucemia Neutrofílica Crônica/genética , Leucemia Neutrofílica Crônica/metabolismo , Glicosilação , Ligantes , Mutação , Receptores de Fator Estimulador de Colônias/genética , Receptores de Fator Estimulador de Colônias/metabolismo , Treonina/metabolismo , Fatores Estimuladores de Colônias/genética , Fatores Estimuladores de Colônias/metabolismo
8.
Nat Commun ; 14(1): 2104, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055389

RESUMO

Bacterial biofilms are formed on environmental surfaces and host tissues, and facilitate host colonization and antibiotic resistance by human pathogens. Bacteria often express multiple adhesive proteins (adhesins), but it is often unclear whether adhesins have specialized or redundant roles. Here, we show how the model biofilm-forming organism Vibrio cholerae uses two adhesins with overlapping but distinct functions to achieve robust adhesion to diverse surfaces. Both biofilm-specific adhesins Bap1 and RbmC function as a "double-sided tape": they share a ß-propeller domain that binds to the biofilm matrix exopolysaccharide, but have distinct environment-facing domains. Bap1 adheres to lipids and abiotic surfaces, while RbmC mainly mediates binding to host surfaces. Furthermore, both adhesins contribute to adhesion in an enteroid monolayer colonization model. We expect that similar modular domains may be utilized by other pathogens, and this line of research can potentially lead to new biofilm-removal strategies and biofilm-inspired adhesives.


Assuntos
Vibrio cholerae , Humanos , Vibrio cholerae/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes , Adesinas Bacterianas , Polissacarídeos/química
9.
ACS Cent Sci ; 9(3): 393-404, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36968546

RESUMO

The emergence of a polybasic cleavage motif for the protease furin in SARS-CoV-2 spike has been established as a major factor for human viral transmission. The region N-terminal to that motif is extensively mutated in variants of concern (VOCs). Besides furin, spikes from these variants appear to rely on other proteases for maturation, including TMPRSS2. Glycans near the cleavage site have raised questions about proteolytic processing and the consequences of variant-borne mutations. Here, we identify that sialic acid-containing O-linked glycans on Thr678 of SARS-CoV-2 spike influence furin and TMPRSS2 cleavage and posit O-linked glycosylation as a likely driving force for the emergence of VOC mutations. We provide direct evidence that the glycosyltransferase GalNAc-T1 primes glycosylation at Thr678 in the living cell, an event that is suppressed by mutations in the VOCs Alpha, Delta, and Omicron. We found that the sole incorporation of N-acetylgalactosamine did not impact furin activity in synthetic O-glycopeptides, but the presence of sialic acid reduced the furin rate by up to 65%. Similarly, O-glycosylation with a sialylated trisaccharide had a negative impact on TMPRSS2 cleavage. With a chemistry-centered approach, we substantiate O-glycosylation as a major determinant of spike maturation and propose disruption of O-glycosylation as a substantial driving force for VOC evolution.

11.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778266

RESUMO

Mucin-domain glycoproteins are densely O-glycosylated and play critical roles in a host of biological functions. In particular, the T cell immunoglobulin and mucin-domain containing family of proteins (TIM-1, -3, -4) decorate immune cells and act as key checkpoint inhibitors in cancer. However, their dense O-glycosylation remains enigmatic both in terms of glycoproteomic landscape and structural dynamics, primarily due to the challenges associated with studying mucin domains. Here, we present a mucinase (SmE) and demonstrate its ability to selectively cleave along the mucin glycoprotein backbone, similar to others of its kind. Unlike other mucinases, though, SmE harbors the unique ability to cleave at residues bearing extremely complex glycans which enabled improved mass spectrometric analysis of several mucins, including the entire TIM family. With this information in-hand, we performed molecular dynamics (MD) simulations of TIM-3 and -4 to demonstrate how glycosylation affects structural features of these proteins. Overall, we present a powerful workflow to better understand the detailed molecular structures of the mucinome.

12.
J Thromb Haemost ; 21(4): 995-1009, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36740532

RESUMO

BACKGROUND: Platelet glycoprotein (GP) Ibα is the major ligand-binding subunit of the GPIb-IX-V complex that binds von Willebrand factor. GPIbα is heavily glycosylated, and its glycans have been proposed to play key roles in platelet clearance, von Willebrand factor binding, and as target antigens in immune thrombocytopenia syndromes. Despite its importance in platelet biology, the glycosylation profile of GPIbα is not well characterized. OBJECTIVES: The aim of this study was to comprehensively analyze GPIbα amino acid sites of glycosylation (glycosites) and glycan structures. METHODS: GPIbα ectodomain that was recombinantly expressed or that was purified from human platelets was analyzed by Western blot, mass spectrometry glycomics, and mass spectrometry glycopeptide analysis to define glycosites and the structures of the attached glycans. RESULTS: We identified a diverse repertoire of N- and O-glycans, including sialoglycans, Tn antigen, T antigen, and ABO(H) blood group antigens. In the analysis of the recombinant protein, we identified 62 unique O-glycosites. In the analysis of the endogenous protein purified from platelets, we identified 48 unique O-glycosites and 1 N-glycosite. The GPIbα mucin domain is densely O-glycosylated. Glycosites are also located within the macroglycopeptide domain and mechanosensory domain. CONCLUSIONS: This comprehensive analysis of GPIbα glycosylation lays the foundation for further studies to determine the functional and structural roles of GPIbα glycans.


Assuntos
Complexo Glicoproteico GPIb-IX de Plaquetas , Fator de von Willebrand , Humanos , Glicosilação , Fator de von Willebrand/metabolismo , Estrutura Terciária de Proteína , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Plaquetas/metabolismo , Proteínas Recombinantes/metabolismo , Ligação Proteica
13.
STAR Protoc ; 4(1): 101974, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36633947

RESUMO

Despite the known disease relevance of glycans, the biological function and substrate specificities of individual glycosyltransferases are often ill-defined. Here, we describe a protocol to develop chemical, bioorthogonal reporters for the activity of the GalNAc-T family of glycosyltransferases using a tactic termed bump-and-hole engineering. This allows identification of the protein substrates and glycosylation sites of single GalNAc-Ts. Despite requiring transfection of cells with the engineered transferases and enzymes for biosynthesis of bioorthogonal substrates, the tactic complements methods in molecular biology. For complete details on the use and execution of this protocol, please refer to Schumann et al. (2020)1, Cioce et al. (2021)2, and Cioce et al. (2022)3.


Assuntos
N-Acetilgalactosaminiltransferases , Proteínas , Humanos , Glicosilação , Proteínas/metabolismo , Peptídeos/química , Polissacarídeos/química , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/química , N-Acetilgalactosaminiltransferases/metabolismo
14.
bioRxiv ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38187615

RESUMO

Mucin-domain glycoproteins are densely O-glycosylated and play critical roles in a host of healthy and disease-driven biological functions. Previously, we developed a mucin-selective enrichment strategy by employing a catalytically inactive mucinase (StcE) conjugated to solid support. While this method was effective, it suffered from low throughput and high sample requirements. Further, the elution step required boiling in SDS, thus necessitating an in-gel digest with trypsin. Here, we optimized our previous enrichment method to include elution conditions amenable to mucinase digestion and downstream analysis with mass spectrometry. This increased throughput and lowered sample input while maintaining mucin selectivity and enhancing glycopeptide signal. We then benchmarked this technique against different O-glycan binding moieties for their ability to enrich mucins from various cell lines and human serum. Overall, the new method outperformed our previous procedure and all other enrichment techniques tested. This allowed for effective isolation of more mucin-domain glycoproteins, resulting in a high number of O-glycopeptides, thus enhancing our ability to analyze the mucinome.

15.
Nat Commun ; 13(1): 6237, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284108

RESUMO

Altered glycoprotein expression is an undisputed corollary of cancer development. Understanding these alterations is paramount but hampered by limitations underlying cellular model systems. For instance, the intricate interactions between tumour and host cannot be adequately recapitulated in monoculture of tumour-derived cell lines. More complex co-culture models usually rely on sorting procedures for proteome analyses and rarely capture the details of protein glycosylation. Here, we report a strategy termed Bio-Orthogonal Cell line-specific Tagging of Glycoproteins (BOCTAG). Cells are equipped by transfection with an artificial biosynthetic pathway that transforms bioorthogonally tagged sugars into the corresponding nucleotide-sugars. Only transfected cells incorporate bioorthogonal tags into glycoproteins in the presence of non-transfected cells. We employ BOCTAG as an imaging technique and to annotate cell-specific glycosylation sites in mass spectrometry-glycoproteomics. We demonstrate application in co-culture and mouse models, allowing for profiling of the glycoproteome as an important modulator of cellular function.


Assuntos
Proteoma , Proteômica , Camundongos , Animais , Proteômica/métodos , Glicoproteínas/metabolismo , Açúcares , Nucleotídeos
16.
Nat Commun ; 13(1): 3542, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725833

RESUMO

Mucin domains are densely O-glycosylated modular protein domains found in various extracellular and transmembrane proteins. Mucin-domain glycoproteins play important roles in many human diseases, such as cancer and cystic fibrosis, but the scope of the mucinome remains poorly defined. Recently, we characterized a bacterial O-glycoprotease, StcE, and demonstrated that an inactive point mutant retains binding selectivity for mucin-domain glycoproteins. In this work, we leverage inactive StcE to selectively enrich and identify mucin-domain glycoproteins from complex samples like cell lysate and crude ovarian cancer patient ascites fluid. Our enrichment strategy is further aided by an algorithm to assign confidence to mucin-domain glycoprotein identifications. This mucinomics platform facilitates detection of hundreds of glycopeptides from mucin domains and highly overlapping populations of mucin-domain glycoproteins from ovarian cancer patients. Ultimately, we demonstrate our mucinomics approach can reveal key molecular signatures of cancer from in vitro and ex vivo sources.


Assuntos
Mucinas , Neoplasias Ovarianas , Feminino , Glicopeptídeos/química , Glicoproteínas/metabolismo , Glicosilação , Humanos , Mucinas/metabolismo , Neoplasias Ovarianas/química , Neoplasias Ovarianas/genética
17.
Curr Opin Chem Biol ; 69: 102174, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35752002

RESUMO

Glycosylation, and especially O-linked glycosylation, remains a critical blind spot in the understanding of post-translational modifications. Due to their nature as proteins defined by a large density and abundance of O-glycosylation, mucins present extra challenges in the analysis of their structure and function. However, recent breakthroughs in multiple areas of research have rendered mucin-domain glycoproteins more accessible to current characterization techniques. In particular, the adaptation of mucinases to glycoproteomic workflows, the manipulation of cellular glycosylation pathways, and the advances in synthetic methods to more closely mimic mucin domains have introduced new and exciting avenues to study mucin glycoproteins. Here, we summarize recent developments in understanding the structure and biological function of mucin domains and their associated glycans, from glycoproteomic tools and visualization methods to synthetic glycopeptide mimetics.


Assuntos
Glicoproteínas , Mucinas , Glicopeptídeos/química , Glicoproteínas/química , Glicosilação , Mucinas/química , Mucinas/metabolismo , Polissacarídeos
18.
Cell ; 185(7): 1172-1188.e28, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35303419

RESUMO

Intestinal mucus forms the first line of defense against bacterial invasion while providing nutrition to support microbial symbiosis. How the host controls mucus barrier integrity and commensalism is unclear. We show that terminal sialylation of glycans on intestinal mucus by ST6GALNAC1 (ST6), the dominant sialyltransferase specifically expressed in goblet cells and induced by microbial pathogen-associated molecular patterns, is essential for mucus integrity and protecting against excessive bacterial proteolytic degradation. Glycoproteomic profiling and biochemical analysis of ST6 mutations identified in patients show that decreased sialylation causes defective mucus proteins and congenital inflammatory bowel disease (IBD). Mice harboring a patient ST6 mutation have compromised mucus barriers, dysbiosis, and susceptibility to intestinal inflammation. Based on our understanding of the ST6 regulatory network, we show that treatment with sialylated mucin or a Foxo3 inhibitor can ameliorate IBD.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Sialiltransferases/genética , Animais , Homeostase , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Muco/metabolismo , Sialiltransferases/metabolismo , Simbiose
19.
J Biol Chem ; 298(2): 101463, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34864058

RESUMO

Interleukin (IL)-22 is a cytokine that plays a critical role in intestinal epithelial homeostasis. Its downstream functions are mediated through interaction with the heterodimeric IL-22 receptor and subsequent activation of signal transducer and activator of transcription 3 (STAT3). IL-22 signaling can induce transcription of genes necessary for intestinal epithelial cell proliferation, tissue regeneration, tight junction fortification, and antimicrobial production. Recent studies have also implicated IL-22 signaling in the regulation of intestinal epithelial fucosylation in mice. However, whether IL-22 regulates intestinal fucosylation in human intestinal epithelial cells and the molecular mechanisms that govern this process are unknown. Here, in experiments performed in human cell lines and human-derived enteroids, we show that IL-22 signaling regulates expression of the B3GNT7 transcript, which encodes a ß1-3-N-acetylglucosaminyltransferase that can participate in the synthesis of poly-N-acetyllactosamine (polyLacNAc) chains. Additionally, we find that IL-22 signaling regulates levels of the α1-3-fucosylated Lewis X (Lex) blood group antigen, and that this glycan epitope is primarily displayed on O-glycosylated intestinal epithelial glycoproteins. Moreover, we show that increased expression of B3GNT7 alone is sufficient to promote increased display of Lex-decorated carbohydrate glycan structures primarily on O-glycosylated intestinal epithelial glycoproteins. Together, these data identify B3GNT7 as an intermediary in IL-22-dependent induction of fucosylation of glycoproteins and uncover a novel role for B3GNT7 in intestinal glycosylation.


Assuntos
Células Epiteliais , Glicoproteínas , Interleucinas , Mucosa Intestinal , N-Acetilglucosaminiltransferases , Células Epiteliais/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Mucosa Intestinal/metabolismo , N-Acetilglucosaminiltransferases/biossíntese , N-Acetilglucosaminiltransferases/metabolismo , Polissacarídeos/metabolismo , Interleucina 22
20.
Mol Cell Proteomics ; 20: 100167, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34678516

RESUMO

Antibodies against posttranslational modifications (PTMs) such as lysine acetylation, ubiquitin remnants, or phosphotyrosine have resulted in significant advances in our understanding of the fundamental roles of these PTMs in biology. However, the roles of a number of PTMs remain largely unexplored due to the lack of robust enrichment reagents. The addition of N-acetylglucosamine to serine and threonine residues (O-GlcNAc) by the O-GlcNAc transferase (OGT) is a PTM implicated in numerous biological processes and disease states but with limited techniques for its study. Here, we evaluate a new mixture of anti-O-GlcNAc monoclonal antibodies for the immunoprecipitation of native O-GlcNAcylated peptides from cells and tissues. The anti-O-GlcNAc antibodies display good sensitivity and high specificity toward O-GlcNAc-modified peptides and do not recognize O-GalNAc or GlcNAc in extended glycans. Applying this antibody-based enrichment strategy to synaptosomes from mouse brain tissue samples, we identified over 1300 unique O-GlcNAc-modified peptides and over 1000 sites using just a fraction of sample preparation and instrument time required in other landmark investigations of O-GlcNAcylation. Our rapid and robust method greatly simplifies the analysis of O-GlcNAc signaling and will help to elucidate the role of this challenging PTM in health and disease.


Assuntos
Anticorpos Monoclonais/imunologia , Glicopeptídeos/imunologia , N-Acetilglucosaminiltransferases/imunologia , Animais , Encéfalo , Camundongos , Células-Tronco Embrionárias Murinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...