Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Opt ; 28(3): 035002, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37009578

RESUMO

Significance: As clinical evidence on the colorectal application of indocyanine green (ICG) perfusion angiography accrues, there is also interest in computerizing decision support. However, user interpretation and software development may be impacted by system factors affecting the displayed near-infrared (NIR) signal. Aim: We aim to assess the impact of camera positioning on the displayed NIR signal across different open and laparoscopic camera systems. Approach: The effects of distance, movement, and target location (center versus periphery) on the displayed fluorescence signal of different systems were measured under electromagnetic stereotactic guidance from an ICG-albumin model and in vivo during surgery. Results: Systems displayed distinct fluorescence performances with variance apparent with scope optical lens configuration (0 deg versus 30 deg), movement, target positioning, and distance. Laparoscopic system readings fitted inverse square function distance-intensity curves with one device and demonstrated a direction dependent sigmoid curve. Laparoscopic cameras presented central targets as brighter than peripheral ones, and laparoscopes with angled optical lens configurations had a diminished field of view. One handheld open system also showed a distance-intensity relationship, whereas the other maintained a consistent signal despite distance, but both presented peripheral targets brighter than central ones. Conclusions: Optimal clinical use and signal computational development requires detailed appreciation of system behaviors.


Assuntos
Verde de Indocianina , Laparoscopia , Angiografia , Fluorescência , Espectroscopia de Luz Próxima ao Infravermelho
2.
Polymers (Basel) ; 12(7)2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32605110

RESUMO

This study is novel for several reasons: We used a thin drop cast layer of dry photosensitive materials to study the behaviors of wet photopolymer media using microscopic distances during the Self-Written Waveguide (SWW) process; then, we examined the self-trajectories formed inside the solid material. The results provide a framework for theoretical and experimental examinations by handling the effects of manipulating the alignment of fibers. The other main advantage of these techniques is their lightweight, easy to process, highly flexible, and ultimately low-cost nature. First, the SWW process in wet photopolymer media (liquid solutions) was examined under three cases: single-, counter-, and co-fiber exposure. Then, the SWWs formed inside the solid material were examined along with the effects of manipulating the alignment of the fibers. In all cases, high precision measurements were used to position the fiber optic cables (FOCs) before exposure using a microscope. The self-writing process was indirectly monitored by observing (imaging) the light emerging from the side of the material sample during SWW formation. In this way, we examined the optical waveguide trajectories formed in Acrylamide/Polyvinyl Alcohol (AA/PVA), a photopolymer material (sensitized at 532 nm). First, the transmission of light by this material is characterized. Then, the bending and merging of the waveguides that occur are investigated. The predictions of our model are shown to qualitatively agree with the observed trajectories. The largest index changes taking place at any time during exposure, i.e., during SWW formation, are shown to take place at the positions where the largest exposure light intensity is present. Typically, such maxima exist close to the input face. The first maximum is referred to as the location of the Primary Eye. Other local maxima also appear further along the SWW and are referred to as Secondary Eyes, i.e., eyes deeper within the material.

3.
Appl Opt ; 58(10): 2656-2661, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045066

RESUMO

Unlike coherent imaging techniques, light field imaging uses incoherent (white light) illumination to generate a digital hologram of three-dimensional (3D) objects in real time. Multiple projections (or elemental images) of a 3D object are captured using a microlens array attached to a digital camera. Orthographic projection images (OPIs) can be synthesized from the recorded elemental images. The synthesized intensity-based OPIs are then multiplied by the corresponding phase functions and combined to form a digital hologram (also known as an integral hologram) of a 3D object under illumination. In this study, we analyze the performance of a synthesized integral hologram under low light imaging (photon-counting) conditions. The feasibility of this technique is verified experimentally by capturing the elemental images and subsequently generating orthographic projection images and by varying photon counts to reconstruct the digital holograms.

4.
J Opt Soc Am A Opt Image Sci Vis ; 36(3): 320-333, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30874185

RESUMO

An experimental and theoretical investigation of the preparation and exposure of multilayer photosensitive materials is presented. It is shown how the recorded change in the refractive index in each layer depends on the dye (photosensitizer) concentrations in each layer. It is also shown how the photosensitive material properties in each layer can be controlled to optimize some recording characteristics for particular applications. To do so, a set of equations, predicting the amplitude of higher harmonics refractive index amplitudes induced in the material layers with depth during exposure, is derived. This results in a technique for varying the dye concentration in each layer of a multilayer, so as to optimize volume diffraction grating performance. In part I of this paper, the 3D nonlocal photopolymerization-driven diffusion (NPDD) model is applied to calculate the resulting combined multilayer absorption and polymerization processes. The NPDD describes the time-varying behaviors taking place during exposure in such photopolymer materials. Simulations are performed for an acrylamide/polyvinyl alcohol-based photopolymer containing erythrosine-B dye. It is predicted that, in general, non-uniform gratings are formed, with the resulting refractive index being distorted both from the ideal sinusoidal cross-sectional spatial distribution and also with depth. This agrees with previous results indicating that increasing the thickness of a single photopolymer layer does not in practice lead to ever-increasing angular selectivity. In part II of this paper, it is confirmed experimentally that a suitably modified multilayer can be used to increase grating angular selectivity, i.e., reduce the width of the off-Bragg replay curve.

5.
J Opt Soc Am A Opt Image Sci Vis ; 36(3): 334-344, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30874186

RESUMO

In the first part of this study, a 3D nonlocal photopolymerization driven diffusion model was developed and applied to simulate the absorption and polymerization taking place during holographic exposures of a multi-layer. The Beer-Lambert law was used to choose appropriate dye concentrations for each layer, with the objective of improving the resulting volume grating uniformity and thus diffraction characteristics. The predictions made, using previously estimated physical parameter values, indicated that improvements in the uniformity of the recorded modulation were possible. In this paper the results of experiments carried out to explore the validity of these predictions are presented. Improvements in material response are demonstrated experimentally, with improved grating diffraction (narrower angular selectivity) being observed for appropriately sensitized multi-layers.

6.
Appl Opt ; 57(22): E107-E117, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30117910

RESUMO

In general, the holographic grating refractive index profiles in photopolymer materials are not identical to the exposing pattern. During exposure, high harmonics of the fundamental refractive index period are generated within the layer volume. A set of equations to calculate the amplitudes of the higher harmonics of refractive index induced in the grating is introduced. Then, an algorithm involving the use of the 3D nonlocal photopolymerization-driven diffusion model is presented and applied to calculate the resulting grating diffraction efficiencies. The experimental observation that the grating diffraction efficiency cannot reach the theoretical maximum value (ηmax=100%) and that, in the case of over-modulation, the minimum value (ηmin=0%) is also never achieved, are explained theoretically. The predictions of the simulations are also fit to experimental data for an acrylamide/polyvinyl alcohol photopolymer material with good agreement being achieved.

7.
Appl Opt ; 57(22): E80-E88, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30117925

RESUMO

Self-written waveguide (SWW) trajectories fabricated inside a dry photopolymer bulk material, acrylamide/polyvinyl alcohol (AA/PVA), are studied. Their production using both Gaussian and Laguerre-Gauss exposing (writing) light beams, output from optical fibers, is explored. The formation of the primary and secondary eyes is also discussed. Furthermore, the interactions that take place when two counterpropagating beams pass through the photopolymer material (both Gaussian and Laguerre-Gauss) are examined. In all cases experimental and theoretical results are presented. Good agreement between the predictions of the proposed model and experimental observations are demonstrated.

8.
Opt Lett ; 42(14): 2774-2777, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28708166

RESUMO

Recently, the vulnerability of the linear canonical transform-based double random phase encryption system to attack has been demonstrated. To alleviate this, we present for the first time, to the best of our knowledge, a method for securing a two-dimensional scene using a quadratic phase encoding system operating in the photon-counted imaging (PCI) regime. Position-phase-shifting digital holography is applied to record the photon-limited encrypted complex samples. The reconstruction of the complex wavefront involves four sparse (undersampled) dataset intensity measurements (interferograms) at two different positions. Computer simulations validate that the photon-limited sparse-encrypted data has adequate information to authenticate the original data set. Finally, security analysis, employing iterative phase retrieval attacks, has been performed.

9.
Polymers (Basel) ; 9(8)2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30971014

RESUMO

Photopolymer materials have received a great deal of attention because they are inexpensive, self-processing materials that are extremely versatile, offering many advantages over more traditional materials. To achieve their full potential, there is significant value in understanding the photophysical and photochemical processes taking place within such materials. This paper includes a brief review of recent attempts to more fully understand what is needed to optimize the performance of photopolymer materials for Holographic Data Storage (HDS) and Self-Written Waveguides (SWWs) applications. Specifically, we aim to discuss the evolution of our understanding of what takes place inside these materials and what happens during photopolymerization process, with the objective of further improving the performance of such materials. Starting with a review of the photosensitizer absorptivity, a dye model combining the associated electromagnetics and photochemical kinetics is presented. Thereafter, the optimization of photopolymer materials for HDS and SWWs applications is reviewed. It is clear that many promising materials are being developed for the next generation optical applications media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...