Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 359: 142243, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759810

RESUMO

The decommissioning and normal functioning of nuclear facilities can result in the production and release of airborne particles in the environment. Aquatic biota are expected to be exposed to these particles considering that nuclear facilities are often located near water bodies. Aerosols, such as cement dust, can interact with radionuclides as well as with heavy metals, and therefore elicit not only radiological impacts but also chemical toxicity. In the present study, we aimed to determine the effects of hydrogenated cement particles (HCPs) as a first step before evaluating any radiotoxicity of tritiated cement particles in the marine mussels, Mytilus galloprovincialis. Responses at different levels of biological organisation were assessed, including clearance rate (CR), tissue specific accumulation, DNA damage and transcriptional expression of key stress related genes. Acute (5 h) and medium-term, chronic (11 d) exposures to 1000 µg L-1 HCPs showed that bioaccumulation, assessed using Cu as a proxy and determined by inductively coupled plasma mass spectrometry, was time and tissue dependent. The highest levels of Cu were found in the digestive gland (DG) after 11 d. HCP exposure caused changes in the expression of oxidative and other stress-related genes, including mt20 in DG and gst and sod in the gill after 5 h exposure, while an overexpression of hsp70 in the gill was observed after 11 d. Genotoxic effects in haemocytes were observed after 11 d of HCP exposure. Multivariate analysis indicated that oxidative stress is the most probable factor contributing to overall physiological dysfunction. Our results provide a baseline to perform further studies employing tritiated cement particles. Specifically, future work should focus on the DG since only this tissue showed significant bioaccumulation when compared to the negative control.


Assuntos
Bioacumulação , Dano ao DNA , Mytilus , Poluentes Químicos da Água , Animais , Mytilus/efeitos dos fármacos , Mytilus/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Materiais de Construção , Brânquias/metabolismo , Brânquias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Metais Pesados/toxicidade , Metais Pesados/metabolismo
2.
Toxicol In Vitro ; 92: 105656, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37532108

RESUMO

The comet assay was recently applied for the first time to test the genotoxicity of micrometric stainless steel and cement particles, representative of those produced in the dismantling of nuclear power plants. A large dataset was obtained from in vitro exposure of BEAS-2B lung cells to different concentrations of hydrogenated (non-radiative control) and tritiated particles, to assess the impact of accidental inhalation. Starting from the distributions of the number of nuclei scored at different extent of DNA damage (% tail DNA values), we propose a new comet data treatment designed to consider the inhomogeneity of the action of such particles. Indeed, due to particle behavior in biological media and concentration, a large fraction of cells remains undamaged, and standard averaging of genotoxicity indicators leads to a misinterpretation of experimental results. The analysis we propose reaches the following goals: genotoxicity in human lung cells is assessed for stainless steel and cement microparticles; the role of radiative damage due to tritium is disentangled from particulate stress; the fraction of damaged cells and their average level of DNA damage are assessed separately, which is essential for carcinogenesis implications and sets the basis for a better-informed risk management for human exposure to radioactive particles.


Assuntos
Aço Inoxidável , Aço , Humanos , Ensaio Cometa , Aço/farmacologia , Aço Inoxidável/toxicidade , Dano ao DNA , Pulmão
3.
Sci Total Environ ; 876: 162816, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36921857

RESUMO

Tritium (3H) is a radioactive isotope of hydrogen that is abundantly released from nuclear industries. It is extremely mobile in the environment and in all biological systems, representing an increasing concern for the health of both humans and non-human biota (NHB). The present review examines the sources and characteristics of tritium in the environment, and evaluates available information pertaining to its biological effects at different levels of biological organisation in NHB. Despite an increasing number of publications in the tritium radiobiology field, there exists a significant disparity between data available for the different taxonomic groups and species, and observations are heavily biased towards marine bivalves, fish and mammals (rodents). Further limitations relate to the scarcity of information in the field relative to the laboratory, and lack of studies that employ forms of tritium other than tritiated water (HTO). Within these constraints, different responses to HTO exposure, from molecular to behavioural, have been reported during early life stages, but the potential transgenerational effects are unclear. The application of rapidly developing "omics" techniques could help to fill these knowledge gaps and further elucidate the relationships between molecular and organismal level responses through the development of radiation specific adverse outcome pathways (AOPs). The use of a greater diversity of keystone species and exposures to multiple stressors, elucidating other novel effects (e.g., by-stander, germ-line, transgenerational and epigenetic effects) offers opportunities to improve environmental risk assessments for the radionuclide. These could be combined with artificial intelligence (AI) including machine learning (ML) and ecosystem-based approaches.


Assuntos
Inteligência Artificial , Ecossistema , Animais , Trítio , Radioisótopos , Biota , Mamíferos/metabolismo
4.
Radiat Res ; 199(1): 25-38, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442022

RESUMO

Biological effects of radioactive particles can be experimentally investigated in vitro as a function of particle concentration, specific activity and exposure time. However, a careful dosimetric analysis is needed to elucidate the role of radiation emitted by radioactive products in inducing cyto- and geno-toxicity: the quantification of radiation dose is essential to eventually inform dose-risk correlations. This is even more fundamental when radioactive particles are short-range emitters and when they have a chemical speciation that might further concur to the heterogeneity of energy deposition at the cellular and sub-cellular level. To this aim, we need to use computational models. In this work, we made use of a Monte Carlo radiation transport code to perform a computational dosimetric reconstruction for in vitro exposure of cells to tritiated steel particles of micrometric size. Particles of this kind have been identified as worth of attention in nuclear power industry and research: tritium easily permeates in steel elements of nuclear reactor machinery, and mechanical operations on these elements (e.g., sawing) during decommissioning of old facilities can result in particle dispersion, leading to human exposure via inhalation. Considering the software replica of a representative in vitro setup to study the effect of such particles, we therefore modelled the radiation field due to the presence of particles in proximity of cells. We developed a computational approach to reconstruct the dose range to individual cell nuclei in contact with a particle, as well as the fraction of "hit" cells and the average dose for the whole cell population, as a function of particle concentration in the culture medium. The dosimetric analysis also provided the basis to make predictions on tritium-induced DNA damage: we estimated the dose-dependent expected yield of DNA double strand breaks due to tritiated steel particle radiation, as an indicator of their expected biological effectiveness.


Assuntos
Núcleo Celular , Radiometria , Humanos , Trítio , Núcleo Celular/efeitos da radiação , Técnicas de Cultura de Células , Dano ao DNA
5.
Toxics ; 10(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36287882

RESUMO

Decommissioning fission and fusion facilities can result in the production of airborne particles containing tritium that could inadvertently be inhaled by workers directly involved in the operations, and potentially others, resulting in internal exposures to tritium. Of particular interest in this context, given the potentially large masses of material involved, is tritiated steel. The International Commission on Radiological Protection (ICRP) has recommended committed effective dose coefficients for inhalation of some tritiated materials, but not specifically for tritiated steel. The lack of a dose coefficient for tritiated steel is a concern given the potential importance of the material. To address this knowledge gap, a "dissolution" study, in vivo biokinetic study in a rodent model (1 MBq intratracheal instillation, 3-month follow-up) and associated state-of-the-art modelling were undertaken to derive dose coefficients for model tritiated steel particles. A committed effective dose coefficient for the inhalation of 3.3 × 10-12 Sv Bq-1 was evaluated for the particles, reflecting an activity median aerodynamic diameter (AMAD) of 13.3 µm, with the value for a reference AMAD for workers (5 µm) of 5.6 × 10-12 Sv Bq-1 that may be applied to occupational inhalation exposure to tritiated steel particles.

6.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36142309

RESUMO

During the decommissioning of nuclear facilities, the tritiated materials must be removed. These operations generate tritiated steel and cement particles that could be accidentally inhaled by workers. Thus, the consequences of human exposure by inhalation to these particles in terms of radiotoxicology were investigated. Their cyto-genotoxicity was studied using two human lung models: the BEAS-2B cell line and the 3D MucilAirTM model. Exposures of the BEAS-2B cell line to particles (2 and 24 h) did not induce significant cytotoxicity. Nevertheless, DNA damage occurred upon exposure to tritiated and non-tritiated particles, as observed by alkaline comet assay. Tritiated particles only induced cytostasis; however, both induced a significant increase in centromere negative micronuclei. Particles were also assessed for their effects on epithelial integrity and metabolic activity using the MucilAirTM model in a 14-day kinetic mode. No effect was noted. Tritium transfer through the epithelium was observed without intracellular accumulation. Overall, tritiated and non-tritiated stainless steel and cement particles were associated with moderate toxicity. However, these particles induce DNA lesions and chromosome breakage to which tritium seems to contribute. These data should help in a better management of the risk related to the inhalation of these types of particles.


Assuntos
Dano ao DNA , Aço Inoxidável , Ensaio Cometa , Humanos , Pulmão/metabolismo , Aço Inoxidável/toxicidade , Trítio/farmacologia
7.
Toxicol In Vitro ; 84: 105448, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35878720

RESUMO

Following accidental inhalation of radioactive cobalt particles, the poorly soluble and highly radioactive Co3O4 particles are retained for long periods in lungs. To decrease their retention time is of crucial importance to minimize radiation-induced damage. As dissolved cobalt is quickly transferred to blood and eliminated by urinary excretion, enhancing the dissolution of particles would favor 60Co elimination. We evaluated the ability of ascorbic acid alone or associated with the chelating agents DTPA1, DFOB2 or EDTA3 to enhance dissolution of cobalt particles after macrophage engulfment, and the drug effects on the translocation of the soluble species CoCl2 through an epithelial barrier. We exposed differentiated THP-1 macrophage-like cells and Calu-3 lung epithelial cells cultured in a bicameral system to cobalt and selected molecules up to 7 days. DTPA, the recommended treatment in man, used alone showed no effect, whereas ascorbic acid significantly increased dissolution of Co3O4 particles. An additional efficacy in intracellular particles dissolution was observed for combinations of ascorbic acid with DTPA and EDTA. Except for DFOB, treatments did not significantly modify translocation of dissolved cobalt across the epithelial lung barrier. Our study provides new insights for decorporating strategies following radioactive cobalt particle intake.


Assuntos
Cobalto , Pulmão , Ácido Ascórbico/farmacologia , Cobalto/toxicidade , Ácido Edético/farmacologia , Humanos , Óxidos , Ácido Pentético/farmacologia
8.
Chemosphere ; 303(Pt 2): 134914, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35588874

RESUMO

During the decommissioning and removal of radioactive material in nuclear facilities, fine, tritiated dusts of stainless steel, cement or tungsten are generated that could be accidently released to the environment. However, the potential radio- and ecotoxicological effects these tritiated particles may have are unknown. In this study, stainless steel particles (SSPs) representative of those likely to be tritiated are manufactured by hydrogenation and their tissue-specific bioaccumulation, release (depuration) and subsequent genotoxic response have been studied in the marine mussel, Mytilus galloprovincialis, as a baseline for future assessments of the potential effects of tritiated SSPs. Exposure to 1000 µg L-1 of SSPs and adopting Cr as a proxy for stainless steel revealed relatively rapid accumulation (∼5 h) in the various mussel tissues but mostly in the digestive gland. Over longer periods up to 18 days, SSPs were readily rejected and egested as faecal material. DNA strand breaks, as a measure of genotoxicity, were determined at each time point in mussel haemocytes using single cell gel electrophoresis, or the comet assay. Lack of chemical genotoxicity was attributed to the rapid processing of SSP particles and limited dissolution of elemental components of steel. Further work employing tritiated SSPs will enable radio-toxicology to be studied without the confounding effects of chemical toxicity.


Assuntos
Mytilus , Aço Inoxidável , Animais , Bioacumulação , Ensaio Cometa/métodos , Dano ao DNA
9.
Radiat Res ; 195(3): 265-274, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33400793

RESUMO

Tritium has been receiving worldwide attention, particularly because of its production and use in existing fission reactors and future nuclear fusion technologies, leading to an increased risk of release in the environment. Linking human health effects to low-dose tritium exposures presents a challenge for many reasons. Among these: biological effects strongly depend on the speciation of tritiated products and exposure pathway; large dosimetric uncertainties may exist; measurements using in vitro cell cultures generally lack a description of effects at the tissue level, while large-scale animal studies might be ethically questionable and too highly demanding in terms of resources. In this context, three-dimensional models of the human airway epithelium are a powerful tool to investigate potential toxicity induced upon inhalation of radioactive products in controlled physiological conditions. In this study we exposed such a model to tritiated water (HTO) for 24 h, with a range of activity levels (up to ∼33 kBq µl-1 cm-2). After the exposures, we measured cell viability, integrity of epithelial layer and pro-inflammatory response at different post-exposure time-points. We also quantified tritium absorption and performed dosimetric estimates considering HTO passage through the epithelial layer, leading to reconstructed upper limits for the dose to the tissue of less than 50 cGy cumulative dose for the highest activity. Upon exposure to the highest activity, cell viability was not decreased; however, we observed a small effect on epithelial integrity and an inflammatory response persisting after seven days. These results represent a reference condition and will guide future experiments using human airway epithelium to investigate the effects of other peculiar tritiated products.


Assuntos
Epitélio/efeitos da radiação , Pulmão/efeitos da radiação , Trítio/efeitos adversos , Água/química , Animais , Epitélio/patologia , Humanos , Pulmão/patologia , Camundongos , Radiometria
10.
Neurotoxicology ; 82: 35-44, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166614

RESUMO

Uranium exposure can lead to neurobehavioral alterations in particular of the monoaminergic system, even at non-cytotoxic concentrations. However, the mechanisms of uranium neurotoxicity after non-cytotoxic exposure are still poorly understood. In particular, imaging uranium in neurons at low intracellular concentration is still very challenging. We investigated uranium intracellular localization by means of synchrotron X-ray fluorescence imaging with high spatial resolution (< 300 nm) and high analytical sensitivity (< 1 µg.g-1 per 300 nm pixel). Neuron-like SH-SY5Y human cells differentiated into a dopaminergic phenotype were continuously exposed, for seven days, to a non-cytotoxic concentration (10 µM) of soluble natural uranyl. Cytoplasmic submicron uranium aggregates were observed accounting on average for 62 % of the intracellular uranium content. In some aggregates, uranium and iron were co-localized suggesting common metabolic pathways between uranium and iron storage. Uranium aggregates contained no calcium or phosphorous indicating that detoxification mechanisms in neuron-like cells are different from those described in bone or kidney cells. Uranium intracellular distribution was compared to fluorescently labeled organelles (lysosomes, early and late endosomes) and to fetuin-A, a high affinity uranium-binding protein. A strict correlation could not be evidenced between uranium and the labeled organelles, or with vesicles containing fetuin-A. Our results indicate a new mechanism of uranium cytoplasmic aggregation after non-cytotoxic uranyl exposure that could be involved in neuronal defense through uranium sequestration into less reactive species. The remaining soluble fraction of uranium would be responsible for protein binding and for the resulting neurotoxic effects.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Urânio/metabolismo , Linhagem Celular , Neurônios Dopaminérgicos/química , Humanos , Compostos Organometálicos/metabolismo , Espectrometria por Raios X , Síncrotrons , Urânio/análise
11.
Toxicol In Vitro ; 66: 104863, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32304792

RESUMO

Inhalation of 60Co3O4 particles may occur at the work place in nuclear industry. Their low solubility may result in chronic lung exposure to γ rays. Our strategy for an improved therapeutic approach is to enhance particle dissolution to facilitate cobalt excretion, as the dissolved fraction is rapidly eliminated, mainly in urine. In vitro dissolution of Co3O4 particles was assessed with two complementary assays in lung fluid surrogates to mimic a pulmonary contamination scenario. Twenty-one molecules and eleven combinations were selected through an extensive search in the literature, based on dissolution studies of other metal oxides (Fe, Mn, Cu) and tested for dissolution enhancement of cobalt particles after 1-28 days of incubation. DTPA, the recommended treatment following cobalt contamination did not enhance 60Co3O4 particles dissolution when used alone. However, by combining molecules with different properties, such as redox potential and chelating ability, we greatly improved the efficacy of each drug used alone, leading for the highest efficacy, to a 2.7 fold increased dissolution as compared to controls. These results suggest that destabilization of the particle surface is an important initiating event for a good efficacy of chelating drugs, and open new perspectives for the identification of new therapeutic strategies.


Assuntos
Radioisótopos de Cobalto/química , Cobalto/química , Descontaminação/métodos , Óxidos/química , Líquidos Corporais , Quelantes/química , Ácido Edético/química , Pulmão , Ácido Pentético/química , Solubilidade
12.
Nanomaterials (Basel) ; 9(9)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480309

RESUMO

Tungsten was chosen as a wall component to interact with the plasma generated by the International Thermonuclear Experimental fusion Reactor (ITER). Nevertheless, during plasma operation tritiated tungsten nanoparticles (W-NPs) will be formed and potentially released into the environment following a Loss-Of-Vacuum-Accident, causing occupational or accidental exposure. We therefore investigated, in the bronchial human-derived BEAS-2B cell line, the cytotoxic and epigenotoxic effects of two types of ITER-like W-NPs (plasma sputtering or laser ablation), in their pristine, hydrogenated, and tritiated forms. Long exposures (24 h) induced significant cytotoxicity, especially for the hydrogenated ones. Plasma W-NPs impaired cytostasis more severely than the laser ones and both types and forms of W-NPs induced significant micronuclei formation, as shown by cytokinesis-block micronucleus assay. Single DNA strand breaks, potentially triggered by oxidative stress, occurred upon exposure to W-NPs and independently of their form, as observed by alkaline comet assay. After 24 h it was shown that more than 50% of W was dissolved via oxidative dissolution. Overall, our results indicate that W-NPs can affect the in vitro viability of BEAS-2B cells and induce epigenotoxic alterations. We could not observe significant differences between plasma and laser W-NPs so their toxicity might not be triggered by the synthesis method.

13.
Analyst ; 144(20): 5928-5933, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31490474

RESUMO

The study of isotopic variations of endogenous and toxic metals in fluids and tissues is a recent research topic with an outstanding potential in biomedical and toxicological investigations. Most of the analyses have been performed so far in bulk samples, which can make the interpretation of results entangled, since different sources of stress or the alteration of different metabolic processes can lead to similar variations in the isotopic compositions of the elements in bulk samples. The downscaling of the isotopic analysis of elements at the sub-cellular level, is considered as a more promising alternative. Here we present for the first time the accurate determination of Cu isotopic ratios in four main protein fractions from lysates of neuron-like human cells exposed in vitro to 10 µM of natural uranium for seven days. These protein fractions were isolated by Size Exclusion Chromatography and analysed by Multi-Collector Inductively Coupled Plasma Mass Spectrometry to determine the Cu isotopic variations in each protein fraction with regard to the original cell lysate. Values obtained, expressed as δ65Cu, were -0.03 ± 0.14 ‰ (Uc, k = 2), -0.55 ± 0.20 ‰ (Uc, k = 2), -0.32 ± 0.21 ‰ (Uc, k = 2) and +0.84 ± 0.21 ‰ (Uc, k = 2) for the four fractions, satisfying the mass balance. The results obtained in this preliminary study pave the way for dedicated analytical developments to identify new specific disease biomarkers, to gain insight into stress-induced altered metabolic processes, as well as to decipher metabolic pathways of toxic elements.


Assuntos
Cobre/química , Isótopos/química , Neurônios/química , Neurônios/efeitos dos fármacos , Proteínas/química , Urânio/farmacologia , Radioisótopos de Cobre , Humanos , Espectrometria de Massas/métodos , Metabolômica/métodos , Urânio/química
14.
Nanomaterials (Basel) ; 9(10)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557883

RESUMO

The International Thermonuclear Experimental Reactor (ITER) is an international project aimed at the production of carbon-free energy through the use of thermonuclear fusion. During ITER operation, in case of a loss-of-vacuum-accident, tungsten nanoparticles (W-NPs) could potentially be released into the environment and induce occupational exposure via inhalation. W-NPs toxicity was evaluated on MucilAir™, a 3D in vitro cell model of the human airway epithelium. MucilAir™ was exposed for 24 h to metallic ITER-like milled W-NPs, tungstate (WO42-) and tungsten carbide cobalt particles alloy (WC-Co). Cytotoxicity and its reversibility were assessed using a kinetic mode up to 28 days after exposure. Epithelial tightness, metabolic activity and interleukin-8 release were also evaluated. Electron microscopy was performed to determine any morphological modification, while mass spectrometry allowed the quantification of W-NPs internalization and of W transfer through the MucilAir™. Our results underlined a decrease in barrier integrity, no effect on metabolic activity or cell viability and a transient increase in IL-8 secretion after exposure to ITER-like milled W-NPs. These effects were associated with W-transfer through the epithelium, but not with intracellular accumulation. We have shown that, under our experimental conditions, ITER-like milled W-NPs have a minor impact on the MucilAir™ in vitro model.

15.
Arch Toxicol ; 93(8): 2141-2154, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31222525

RESUMO

Uranium (U) is the heaviest naturally occurring element ubiquitously present in the Earth's crust. Human exposure to low levels of U is, therefore, unavoidable. Recently, several studies have clearly pointed out that the brain is a sensitive target for U, but the mechanisms leading to the observed neurological alterations are not fully known. To deepen our knowledge of the biochemical disturbances resulting from U(VI) toxicity in neuronal cells, two complementary strategies were set up to identify the proteins that selectively bind U(VI) in human dopaminergic SH-SY5Y cells. The first strategy relies on the selective capture of proteins capable of binding U(VI), using immobilized metal affinity chromatography, and starting from lysates of cells grown in a U(VI)-free medium. The second strategy is based on the separation of U-enriched protein fractions by size-exclusion chromatography, starting from lysates of U(VI)-exposed cells. High-resolution mass spectrometry helped us to highlight 269 common proteins identified as the urano-proteome. They were further analyzed to characterize their cellular localization and biological functions. Four canonical pathways, related to the protein ubiquitination system, gluconeogenesis, glycolysis, and the actin cytoskeleton proteins, were particularly emphasized due to their high content of U(VI)-bound proteins. A semi-quantification was performed to concentrate on the ten most abundant proteins, whose physico-chemical characteristics were studied in particular depth. The selective interaction of U(VI) with these proteins is an initial element of proof of the possible metabolic effects of U(VI) on neuronal cells at the molecular level.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Urânio/toxicidade , Células Cultivadas , Neurônios Dopaminérgicos/metabolismo , Gluconeogênese , Glicólise , Humanos , Complexo de Endopeptidases do Proteassoma/fisiologia , Ligação Proteica , Proteômica , Urânio/metabolismo
16.
Sci Rep ; 8(1): 17163, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30464301

RESUMO

The impact of natural uranium (U) on differentiated human neuron-like cells exposed to 1, 10, 125, and 250 µM of U for seven days was assessed. In particular, the effect of the U uptake on the homeostatic modulation of several endogenous elements (Mg, P, Mn, Fe, Zn, and Cu), the U isotopic fractionation upon its incorporation by the cells and the evolution of the intracellular Cu and Zn isotopic signatures were studied. The intracellular accumulation of U was accompanied by a preferential uptake of 235U for cells exposed to 1 and 10 µM of U, whereas no significant isotopic fractionation was observed between the extra- and the intracellular media for higher exposure U concentrations. The U uptake was also found to modulate the homeostasis of Cu, Fe, and Mn for cells exposed to 125 and 250 µM of U, but the intracellular Cu isotopic signature was not modified. The intracellular Zn isotopic signature was not modified either. The activation of the non-specific U uptake pathway might be related to this homeostatic modulation. All together, these results show that isotopic and quantitative analyses of toxic and endogenous elements are powerful tools to help deciphering the toxicity mechanisms of heavy metals.


Assuntos
Metais/análise , Neurônios/química , Neurônios/metabolismo , Fósforo/análise , Urânio/metabolismo , Linhagem Celular , Homeostase , Humanos
17.
Neurotoxicology ; 68: 177-188, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30076899

RESUMO

Natural uranium is an ubiquitous element present in the environment and human exposure to low levels of uranium is unavoidable. Although the main target of acute uranium toxicity is the kidney, some concerns have been recently raised about neurological effects of chronic exposure to low levels of uranium. Only very few studies have addressed the molecular mechanisms of uranium neurotoxicity, indicating that the cholinergic and dopaminergic systems could be altered. The main objective of this study was to investigate the mechanisms of natural uranium toxicity, after 7-day continuous exposure, on terminally differentiated human SH-SY5Y cells exhibiting a dopaminergic phenotype. Cell viability was first assessed showing that uranium cytotoxicity only occurred at high exposure concentrations (> 125 µM), far from the expected values for uranium in the blood even after occupational exposure. SH-SY5Y differentiated cells were then continuously exposed to 1, 10, 125 or 250 µM of natural uranium for 7 days and uranium quantitative subcellular distribution was investigated by means of micro-PIXE (Particle Induced X-ray Emission). The subcellular element imaging revealed that uranium was located in defined perinuclear regions of the cytoplasm, suggesting its accumulation in organelles. Uranium was not detected in the nucleus of the differentiated cells. Quantitative analysis evidenced a very low intracellular uranium content at non-cytotoxic levels of exposure (1 and 10 µM). At higher levels of exposure (125 and 250 µM), when cytotoxic effects begin, a larger and disproportional intracellular accumulation of uranium was observed. Finally the expression of dopamine-related genes was quantified using real time qRT-PCR. The expression of monoamine oxidase B (MAO-B) gene was statistically significantly decreased after exposure to uranium while other dopamine-related genes were not modified. The down regulation of MAO-B was confirmed at the protein level. This original result suggests that the inhibition of dopamine catabolism, but also of other MAO-B substrates, could constitute selective effects of uranium neurotoxicity.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Monoaminoxidase/metabolismo , Urânio/metabolismo , Urânio/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular , Citoplasma/metabolismo , Regulação para Baixo , Humanos
18.
Talanta ; 178: 894-904, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29136912

RESUMO

The monitoring of isotopic fractionations in in vitro cultured human cell samples is a very promising and under-exploited tool to help identify the metabolic processes leading to disease-induced isotopic fractionations or decipher metabolic pathways of toxic metals in these samples. One of the limitations is that the analytes are often present at small amounts, ranging from tens to hundreds of ng, thus making challenging low-uncertainty isotope ratio determinations. Here we present a new procedure for U, Cu and Zn purification and isotope ratio determinations in cultured human neuron-like cells exposed to natural U. A thorough study of the influence of the limiting factors impacting the uncertainty of δ238U, δ66Zn and δ65Cu is also carried out. These factors include the signal intensity, which determines the within-day measurement reproducibility, the procedural blank correction and the matrix effects, which determine the accuracy of the mass bias correction models. Given the small Cu and U amounts in the cell samples, 15-30 and 20ng respectively, a highly efficient sample introduction system was employed in order to improve the analyte transport to the plasma and, hence, the signal intensity. With this device, the procedural blanks became the main uncertainty source of δ238U and δ65Cu values, accounting over 65% of the overall uncertainty. The matrix effects gave rise to inaccuracies in the mass bias correction models for samples finally dissolved in the minimal volumes required for the analysis, 100-150µL, leading to biases for U and Cu. We will show how these biases can be cancelled out by dissolving the samples in volumes of at least 300µL for Cu and 450µL for U. Using our procedure, expanded uncertainties (k = 2) of around 0.35‰ for δ238U and 0.15‰ for δ66Zn and δ65Cu could be obtained. The analytical approach presented in this work is also applicable to other biological microsamples and can be extended to other elements and applications.


Assuntos
Metais Pesados/química , Metais Pesados/metabolismo , Células Cultivadas , Cobre/química , Cobre/metabolismo , Humanos , Isótopos , Neurônios/citologia , Neurônios/metabolismo , Reprodutibilidade dos Testes , Urânio/química , Urânio/metabolismo , Zinco/química , Zinco/metabolismo
19.
Proc Natl Acad Sci U S A ; 113(49): 14007-14012, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27872304

RESUMO

The study of the isotopic fractionation of endogen elements and toxic heavy metals in living organisms for biomedical applications, and for metabolic and toxicological studies, is a cutting-edge research topic. This paper shows that human neuroblastoma cells incorporated small amounts of uranium (U) after exposure to 10 µM natural U, with preferential uptake of the 235U isotope with regard to 238U. Efforts were made to develop and then validate a procedure for highly accurate n(238U)/n(235U) determinations in microsamples of cells. We found that intracellular U is enriched in 235U by 0.38 ± 0.13‰ (2σ, n = 7) relative to the exposure solutions. These in vitro experiments provide clues for the identification of biological processes responsible for uranium isotopic fractionation and link them to potential U incorporation pathways into neuronal cells. Suggested incorporation processes are a kinetically controlled process, such as facilitated transmembrane diffusion, and the uptake through a high-affinity uranium transport protein involving the modification of the uranyl (UO22+) coordination sphere. These findings open perspectives on the use of isotopic fractionation of metals in cellular models, offering a probe to track uptake/transport pathways and to help decipher associated cellular metabolic processes.


Assuntos
Fracionamento Químico/métodos , Urânio/análise , Técnicas de Cultura de Células , Linhagem Celular/metabolismo , Humanos , Isótopos , Neurônios/metabolismo , Urânio/metabolismo
20.
Part Fibre Toxicol ; 13: 5, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26843362

RESUMO

BACKGROUND: Poorly soluble cobalt (II, III) oxide particles (Co3O4P) are believed to induce in vitro cytotoxic effects via a Trojan-horse mechanism. Once internalized into lysosomal and acidic intracellular compartments, Co3O4P slowly release a low amount of cobalt ions (Co(2+)) that impair the viability of in vitro cultures. In this study, we focused on the genotoxic potential of Co3O4P by performing a comprehensive investigation of the DNA damage exerted in BEAS-2B human bronchial epithelial cells. RESULTS: Our results demonstrate that poorly soluble Co3O4P enhanced the formation of micronuclei in binucleated cells. Moreover, by comet assay we showed that Co3O4P induced primary and oxidative DNA damage, and by scoring the formation of γ-H2Ax foci, we demonstrated that Co3O4P also generated double DNA strand breaks. CONCLUSIONS: By comparing the effects exerted by poorly soluble Co3O4P with those obtained in the presence of soluble cobalt chloride (CoCl2), we demonstrated that the genotoxic effects of Co3O4P are not simply due to the released Co(2+) but are induced by the particles themselves, as genotoxicity is observed at very low Co3O4P concentrations.


Assuntos
Brônquios/efeitos dos fármacos , Cobalto/toxicidade , Quebras de DNA de Cadeia Dupla , Células Epiteliais/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Óxidos/toxicidade , Apoptose/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/patologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cobalto/química , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Histonas/metabolismo , Humanos , Exposição por Inalação , Nanopartículas Metálicas , Testes para Micronúcleos , Óxidos/química , Medição de Risco , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...