Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1438900, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247690

RESUMO

Introduction: Translation is a fundamental process of life. In eukaryotes, the elongation step of translation is highly conserved and is driven by eukaryotic translation elongation factors (eEF)1A and eEF2. A significant variation of the elongation is the activity of eukaryotic elongation factor (eEF) 3 in Saccharomyces cerevisiae encoded by the gene yeast elongation factor (YEF3) with orthologs in all fungal species, a few algae, and some protists. In S. cerevisiae, YEF3 is an essential gene and eEF3 plays a critical role in translation elongation, as it promotes binding of the ternary complex acylated-Transfer RNA (tRNA)-eEF1A-Guanosine-5'-triphosphate (GTP) to the aminoacyl (A) site of the ribosome, the release of uncharged tRNAs after peptide translocation, and ribosome recycling. Even though YEF3 was discovered more than 40 years ago, eEF3 has been characterized almost exclusively in S. cerevisiae. Methods: We undertook an in vivo genetic approach to assess the functional conservation of eEF3 across phylogenetically distant fungal species. Results: We found that eEF3 from Zygosaccharomyces rouxii and Candida glabrata (both belonging to phylum Ascomycota), Ustilago maydis (phylum Basidiomycota), and Gonapodya prolifera (phylum Monoblepharomycota), but not Aspergillus nidulans (phylum Ascomycota), supported the growth of S. cerevisiae lacking the endogenous YEF3 gene. We also proved that eEF3 is an essential gene in the ascomycetes C. glabrata and A. nidulans. Discussion: Given that most existing knowledge on fungal translation has only been obtained from S. cerevisiae, our findings beyond this organism showed variability in the elongation process in Fungi. We also proved that eEF3 is essential in pathogenic fungi, opening the possibility of using eEF3 as a target to fight candidiasis.

2.
Trends Cell Biol ; 34(9): 703-706, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39069439

RESUMO

High-risk human papillomaviruses (HPVs) cause most cases of cervical cancer, a disease with an increasing impact worldwide. Recent studies have shown that the synthesis of viral oncoproteins is strongly subject to translational control. Thus, targeting the protein synthesis machinery might open novel avenues to develop innovative therapies aiming to improve patients' survival.


Assuntos
Papillomaviridae , Biossíntese de Proteínas , RNA Mensageiro , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/virologia , RNA Viral/genética , RNA Viral/metabolismo , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/genética , Regulação Viral da Expressão Gênica , Feminino
3.
An Acad Bras Cienc ; 95(3): e20220853, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37878907

RESUMO

Some grasslands in ecotones with forests tend to be encroached by woody species, because of changes in climate and land use. Such structural changes in vegetation can be facilitated when the grassland community presents an autochthonous arboreal component, like Butia palms. We aim to identify the responses of taxonomic and functional diversity on grassland community with the occurrence of arborescent/arboreal species (autochthonous and encroaching) to palm density and grazing intensity. The study was conducted in a Butia odorata palm grove under cattle management, in Southern Brazil. To assess the taxonomic and functional composition we performed ordinations analysis with the vegetational data and using path analysis we assessed the causal relationships between variables of interest. Density of Butia odorata and woody plants were strongly positive related, suggesting a facilitation process in the establishment of arborescent plants on the grassland matrix. The abundance of less palatable plants and grazing pressure were inversely related, indicating a selection process induced by higher grazing intensity. We suggest that the grazing intensity management must be based on the autochthonous tree density, applying higher grazing intensity in areas with higher density of encroaching plants, in addition to maintaining other regions conducive to Butia palm regeneration through fallows.


Assuntos
Arecaceae , Pradaria , Animais , Bovinos , Gado , Plantas , Florestas , Árvores , Ecossistema , Biodiversidade
4.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34615711

RESUMO

Cervical cancer is the fourth most common cause of cancer in women worldwide in terms of both incidence and mortality. Persistent infection with high-risk types of human papillomavirus (HPV), namely 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and 68, constitute a necessary cause for the development of cervical cancer. Viral oncoproteins E6 and E7 play central roles in the carcinogenic process by virtue of their interactions with cell master proteins such as p53, retinoblastoma (Rb), mammalian target of rapamycin (mTOR), and c-MYC. For the synthesis of E6 and E7, HPVs use a bicistronic messenger RNA (mRNA) that has been studied in cultured cells. Here, we report that in cervical tumors, HPV-18, -39, and -45 transcribe E6/E7 mRNAs with extremely short 5' untranslated regions (UTRs) or even lacking a 5' UTR (i.e., zero to three nucleotides long) to express E6. We show that the translation of HPV-18 E6 cistron is regulated by the motif ACCaugGCGCG(C/A)UUU surrounding the AUG start codon, which we term Translation Initiation of Leaderless mRNAs (TILM). This motif is conserved in all HPV types of the phylogenetically coherent group forming genus alpha, species 7, which infect mucosal epithelia. We further show that the translation of HPV-18 E6 largely relies on the cap structure and eIF4E and eIF4AI, two key translation initiation factors linking translation and cancer but does not involve scanning. Our results support the notion that E6 forms the center of the positive oncogenic feedback loop node involving eIF4E, the mTOR cascade, and p53.


Assuntos
Proteínas de Ligação a DNA/genética , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/genética , Papillomavirus Humano 18/genética , Proteínas Oncogênicas Virais/genética , RNA Mensageiro/genética , Regiões 5' não Traduzidas/genética , Linhagem Celular Tumoral , Códon de Iniciação/genética , Proteínas de Ligação a DNA/biossíntese , Feminino , Regulação Viral da Expressão Gênica/genética , Células HEK293 , Células HaCaT , Células HeLa , Papillomavirus Humano 18/metabolismo , Humanos , Proteínas Oncogênicas Virais/biossíntese , Iniciação Traducional da Cadeia Peptídica/genética , RNA Viral/genética , Serina-Treonina Quinases TOR/genética , Proteína Supressora de Tumor p53/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
5.
Biochim Biophys Acta Rev Cancer ; 1875(1): 188455, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148499

RESUMO

Dysregulation of mRNA translation is involved in the onset and progression of different types of cancer. To gain insight into novel genetic strategies to avoid this malady, we reviewed the available genomic, transcriptomic, and proteomic data about the translational machinery from the naked-mole rat (NMR) Heterocephalus glaber, a new model of study that exhibits high resistance to cancer. The principal features that might confer cancer resistance are 28S rRNA fragmentation, RPL26 and eIF4G overexpression, global downregulation of mTOR pathway, specific amino acid residues in RAPTOR (P908) and RICTOR (V1695), and the absence of 4E-BP3. These features are not only associated with cancer but also might couple longevity and adaptation to hypoxia. We propose that the regulation of translation is among the strategies endowing NMR cancer resistance.


Assuntos
Resistência à Doença/genética , Ratos-Toupeira/genética , Neoplasias/genética , Transcriptoma/genética , Animais , Fator de Iniciação Eucariótico 4G/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Longevidade/genética , Neoplasias/patologia , RNA Ribossômico 28S/genética , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Regulatória Associada a mTOR/genética , Hipóxia Tumoral/genética
6.
Front Oncol ; 10: 322, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32232004

RESUMO

Various metabolic pathways and molecular processes in the cell act intertwined, and dysregulating the interplay between some of them may lead to cancer. It is only recently that defects in the translation process, i.e., the synthesis of proteins by the ribosome using a messenger (m)RNA as a template and translation factors, have begun to gain strong attention as a cause of autophagy dysregulation with effects in different maladies, including cancer. Autophagy is an evolutionarily conserved catabolic process that degrades cytoplasmic elements in lysosomes. It maintains cellular homeostasis and preserves cell viability under various stress conditions, which is crucial for all eukaryotic cells. In this review, we discuss recent advances shedding light on the crosstalk between the translation and the autophagy machineries and its impact on tumorigenesis. We also summarize how this interaction is being the target for novel therapies to treat cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA