Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(5)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37317321

RESUMO

The advent of omic platforms revealed the significant benefits of probiotics in the prevention of many infectious diseases. This led to a growing interest in novel strains of probiotics endowed with health characteristics related to microbiome and immune modulation. Therefore, autochthonous bacteria in plant ecosystems might offer a good source for novel next-generation probiotics. The main objective of this study was to analyze the effect of Rouxiella badensis acadiensis Canan (R. acadiensis) a bacterium isolated from the blueberry biota, on the mammalian intestinal ecosystem and its potential as a probiotic microorganism. R. acadiensis, reinforced the intestinal epithelial barrier avoiding bacterial translocation from the gut to deep tissues, even after feeding BALB/c mice for a prolonged period of time. Moreover, diet supplementation with R. acadiensis led to increases in the number of Paneth cells, well as an increase in the antimicrobial peptide α defensin. The anti-bacterial effect of R. acadiensis against Staphylococcus aureus and Salmonella enterica serovar Typhimurium was also reported. Importantly, R. acadiensis-fed animals showed better survival in an in vivo Salmonella enterica serovar Typhimurium challenge compared with those that received a conventional diet. These results demonstrated that R. acadiensis possesses characteristics of a probiotic strain by contributing to the reinforcement and maintenance of intestinal homeostasis.

2.
Front Nutr ; 9: 948488, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225882

RESUMO

Undernutrition remains a major issue in global health. Low protein-energy consumption, results in stunting, wasting and/or underweight, three deleterious forms of malnutrition that affect roughly 200 million children under the age of five years. Undernutrition compromises the immune system with the generation of various degrees of immunodeficiency, which in turn, renders undernourished individuals more sensitive to acute infections. The severity of various infectious diseases including visceral leishmaniasis (VL), influenza, and tuberculosis is associated with undernutrition. Immunosuppression resulting from protein-energy undernutrition severely impacts primary and secondary lymphoid organs involved in the response to related pathogens. The thymus-a primary lymphoid organ responsible for the generation of T lymphocytes-is particularly compromised by both undernutrition and infectious diseases. In this respect, we will discuss herein various intrathymic cellular and molecular interactions seen in undernutrition alone or in combination with acute infections. Many examples illustrated in studies on humans and experimental animals clearly revealed that protein-related undernutrition causes thymic atrophy, with cortical thymocyte depletion. Moreover, the non-lymphoid microenvironmental compartment of the organ undergoes important changes in thymic epithelial cells, including their secretory products such as hormones and extracellular matrix proteins. Of note, deficiencies in vitamins and trace elements also induce thymic atrophy. Interestingly, among the molecular interactions involved in the control of undernutrition-induced thymic atrophy is a hormonal imbalance with a rise in glucocorticoids and a decrease in leptin serum levels. Undernutrition also yields a negative impact of acute infections upon the thymus, frequently with the intrathymic detection of pathogens or their antigens. For instance, undernourished mice infected with Leishmania infantum (that causes VL) undergo drastic thymic atrophy, with significant reduction in thymocyte numbers, and decreased levels of intrathymic chemokines and cytokines, indicating that both lymphoid and microenvironmental compartments of the organ are affected. Lastly, recent data revealed that some probiotic bacteria or probiotic fermented milks improve the thymus status in a model of malnutrition, thus raising a new field for investigation, namely the thymus-gut connection, indicating that probiotics can be envisioned as a further adjuvant therapy in the control of thymic changes in undernutrition accompanied or not by infection.

3.
Aging (Albany NY) ; 14(18): 7193-7205, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36152043

RESUMO

The early sequencing of the SARS-CoV-2 viral genome allowed for a speedy development of effective vaccines against the virus. Nevertheless, age-related immunosenescence, the inability to mount strong immune responses, still represents a major obstacle. Here, in a group of 149 elderly volunteers (70-96 years old), evolution of the humoral immune response over time to Gam-COVID-Vac (Sputnik V), a vaccine based on heterologous recombinant adenovirus-26 (Ad26) and adenovirus-5 (Ad5) carrying the Spike genome, was analyzed by an anti-RBD ELISA. At 28 days post vaccination (dpv), a seroconversion rate of 91% was achieved, showing the importance of administering at least two doses of Gam-COVID-Vac to elicit a robust immune response, especially in elderly individuals without previous SARS-CoV-2 infection. Interestingly, IgG specific antibodies that reached their highest titers around 28 dpv (median = 740), persisted without significant decrease after 60 dpv (median = 650). After 90 dpv, IgG titers began to drop, and at 180 dpv only 44.7% of the elderly individuals remained with detectable anti-RBD IgG antibodies. No significant differences were observed in specific humoral immune responses between genders at early times point. However, at 60 dpv anti-RBD titers were more persistent in elderly females, and only dropped at 90 dpv (p < 0.0001). As expected, the highest antibodies titers were elicited in the youngest subgroup (70-74 years). Our results show that Gam-COVID-Vac was able to deal with the ageing of the immune system, eliciting a robust immune response in an elderly cohort, which lasted approximately 90 dpv at high levels, and protected against COVID-19.


Assuntos
COVID-19 , Vacinas Virais , Adenoviridae/genética , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Feminino , Humanos , Imunidade Humoral , Imunoglobulina G , Masculino , SARS-CoV-2
4.
Nutrients ; 14(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35276973

RESUMO

The ability of the immune system to respond to different pathogens throughout life requires the constant production and selection of T cells in the thymus. This immune organ is very sensitive to age, infectious processes and nutrition disorders (obesity and malnutrition). Several studies have shown that the incorporation of some probiotic bacteria or probiotic fermented milk in the diet has beneficial effects, not only at the intestinal level but also on distant mucosal tissues, improving the architecture of the thymus in a malnutrition model. The aim of the present study was to determine whether supplementation with the probiotic strain Lactobacillus casei CRL 431 and/or its cell wall could improve body weight, intestinal microbiota and thymus structure and function in both obese and aging mice. We evaluated probiotic administration to BALB/c mice in 2 experimental mouse models: obesity and senescence, including mice of different ages (21, 28, 45, 90 and 180 days). Changes in thymus size and histology were recorded. T-lymphocyte population and cytokine production were also determined. The consumption of probiotics improved the cortical/medullary ratio, the production and regulation of cytokines and the recovery of mature T-lymphocyte populations of the thymus in obese and old mice. Probiotic incorporation into the diet could not only modulate the immune system but also lead to thymus function recovery, thus improving quality of life.


Assuntos
Probióticos , Qualidade de Vida , Animais , Suplementos Nutricionais , Camundongos , Camundongos Endogâmicos BALB C , Obesidade/microbiologia
5.
Lancet Reg Health Am ; 6: 100123, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34841388

RESUMO

BACKGROUND: Gam-COVID-Vac (SPUTNIK V) has been granted emergency use authorization in 70 nations and has been administered to millions worldwide. However, there are very few peer-reviewed studies describing its effects. Independent reports regarding safety and effectiveness could accelerate the final approval by the WHO. We aimed to study the long-term humoral immune response in naïve and previously infected volunteers who received SPUTNIK V. METHODS: Humoral immune responses, assayed by anti-SARS-CoV-2-spike-RBD IgG ELISA and neutralization assays, were measured in 602 healthcare workers at 0, 14, 28, 60 and 180 days after receiving SPUTNIK V between December 2020 and July 2021 in Tucumán, Argentina. FINDINGS: Seroconversion was detected in 97% of individuals after 28 days post-vaccination (dpv) (N = 405). Anti-RBD titers began to decrease after 60 dpv (N = 328), but remained detectable in 94% at 90 dpv (N = 224). At 180 dpv, anti-RDB titers persisted in 31% (N = 146). Previous infection triggered an increased immune response to the first dose and increased neutralization activity against variants of concern (VOC). Second doses in previously infected individuals further increased titers, even 90 dpv (N = 75). Basal antibody titers had more influence on post-vaccination anti-RBD responses than the time elapsed between diagnosis and vaccination (N = 274). INTERPRETATION: Data presented herein provides essential knowledge regarding the kinetics of antibodies induced by SPUTNIK V up to six months after immunization, and suggests that when considering one-dose vaccination policies for individuals with previous SARS-CoV-2 infection, serological studies to determine basal titers may be important, independent of when diagnosis occurred. FUNDING: Tucumán Public Health System (SIPROSA), Argentinean National Research Council (CONICET), National University of Tucumán (UNT).

6.
Front Med (Lausanne) ; 8: 720988, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722566

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a global pandemic with dramatic health and socioeconomic consequences. The Coronavirus Disease 2019 (COVID-19) challenges health systems to quickly respond by developing new diagnostic strategies that contribute to identify infected individuals, monitor infections, perform contact-tracing, and limit the spread of the virus. In this brief report, we developed a highly sensitive, specific, and precise "In-House" ELISA to correctly discriminate previously SARS-CoV-2-infected and non-infected individuals and study population seroprevalence. Among 758 individuals evaluated for anti-SARS-CoV-2 serology in the province of Tucumán, Argentina, we found a weak correlation between antibodies elicited against the RBD, the receptor-binding domain of the Spike protein, and the nucleocapsid (N) antigens of this virus. Additionally, we detected mild levels of anti-RBD IgG antibodies in 33.6% of individuals diagnosed with COVID-19, while only 19% showed sufficient antibody titers to be considered as plasma donors. No differences in IgG anti-RBD titers were found between women and men, neither in between different age groups ranging from 18 to 60. Surprisingly, individuals from a high altitude village displayed elevated and longer lasting anti-RBD titers compared to those from a lower altitude city. To our knowledge, this is the first report correlating altitude with increased humoral immune response against SARS-CoV-2 infection.

7.
Front Immunol ; 12: 660854, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054825

RESUMO

Probiotics have been associated with a variety of health benefits. They can act as adjuvant to enhance specific immune response. Bacterial cell wall (CW) molecules are key structures that interact with host receptors promoting probiotic effects. The adjuvant capacity underlying this sub-cellular fraction purified from Lactobacillus casei CRL431 and L. paracasei CNCMI-1518 remains to be characterized. We interrogated the molecular and cellular events after oral feeding with probiotic-derived CW in addition to heat-inactivated Salmonella Typhimurium and their subsequent protective capacity against S. Typhimurium challenge. Intact probiotic bacteria were orally administered for comparison. We find that previous oral feeding with probiotics or their sub-cellular fraction reduce bacterial burden in spleen and liver after Salmonella challenge. Antibody responses after pathogen challenge were negligible, characterized by not major changes in the antibody-mediated phagocytic activity, and in the levels of total and Salmonella-specific intestinal sIgA and serum IgG, respectively. Conversely, the beneficial effect of probiotic-derived CW after S. Typhimurium challenge were ascribed to a Th1-type cell-mediated immunity which was characterized by augmentation of the delayed-type hypersensitivity response. The cell-mediated immunity associated with the oral feeding with probiotic-derived CW was accompanied with a Th1-cell polarizing cytokines, distinguished by increase IFN-γ/IL-4 ratio. Similar results were observed with the intact probiotics. Our study identified molecular events associated with the oral administration of sub-cellular structures derived from probiotics and their adjuvant capacity to exert immune modulatory function.


Assuntos
Parede Celular/imunologia , Lacticaseibacillus casei/imunologia , Lacticaseibacillus paracasei/imunologia , Probióticos/administração & dosagem , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Células Th1/imunologia , Adjuvantes Imunológicos/administração & dosagem , Administração Oral , Animais , Anticorpos Antibacterianos/sangue , Citocinas/imunologia , Imunidade Celular , Lacticaseibacillus casei/química , Lacticaseibacillus paracasei/química , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose
8.
Ann Nutr Metab ; 74(2): 115-124, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30673668

RESUMO

BACKGROUND: The gastrointestinal tract is one of the most microbiologically active ecosystems that plays a crucial role in the working of the mucosal immune system (MIS). In this ecosystem, the consumed probiotics stimulate the immune system and induce a network of signals mediated by the whole bacteria or their cell wall structure. This review is aimed at describing the immunological mechanisms of probiotics and their beneficial effects on the host. SUMMARY: Once administered, oral probiotic bacteria interact with the intestinal epithelial cells (IECs) or immune cells associated with the lamina propria, through Toll-like receptors, and induce the production of different cytokines or chemokines. Macrophage chemoattractant protein 1, produced by the IECs, sends signals to other immune cells leading to the activation of the MIS, characterized by an increase in immunoglobulin A+ cells of the intestine, bronchus and mammary glands, and the activation of T cells. Specifically, probiotics activate regulatory T cells that release IL-10. Interestingly, probiotics reinforce the intestinal barrier by an increase of the mucins, the tight junction proteins and the Goblet and Paneth cells. Another proposed mechanism of probiotics is the modulation of intestinal microbiota by maintaining the balance and suppressing the growth of potential pathogenic bacteria in the gut. Furthermore, it has been demonstrated that long-term probiotics consumption does not affect the intestinal homeostasis. The viability of probiotics is crucial in the interaction with IECs and macrophages favoring, mainly, the innate immune response. Macrophages and Dendritic cells (DCs) play an important role in this immune response without inducing an inflammatory pattern, just a slight increase in the cellularity of the lamina propria. Besides, as part of the machinery that probiotics activate to protect against different pathogens, an increase in the microbicidal activity of peritoneal and spleen macrophages has been reported. In malnutrition models, such as undernourishment and obesity, probiotic was able to increase the intestinal and systemic immune response. Furthermore, probiotics contribute to recover the histology of both the intestine and the thymus damaged in these conditions. Probiotic bacteria are emerging as a safe and natural strategy for allergy prevention and treatment. Different mechanisms such as the generation of cytokines from activated pro-T-helper type 1, which favor the production of IgG instead of IgE, have been proposed. Key Messages: Probiotic bacteria, their cell walls or probiotic fermented milk have significant effects on the functionality of the mucosal and systemic immune systems through the activation of multiple immune mechanisms.


Assuntos
Microbioma Gastrointestinal , Sistema Imunitário , Mucosa Intestinal/imunologia , Probióticos/administração & dosagem , Bactérias , Humanos
9.
Front Microbiol ; 9: 736, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713315

RESUMO

The huge amount of intestinal bacteria represents a continuing threat to the intestinal barrier. To meet this challenge, gut epithelial cells produce antimicrobial peptides (AMP) that act at the forefront of innate immunity. We explore whether this antimicrobial activity and Paneth cells, the main intestinal cell responsible of AMP production, are influenced by probiotics administration, to avoid the imbalance of intestinal microbiota and preserve intestinal barrier. Administration of Lactobacillus casei CRL 431 (Lc 431) and L. paracasei CNCM I-1518 (Lp 1518) to 42 days old mice, increases the number of Paneth cells on small intestine, and the antimicrobial activity against the pathogens Staphylococcus aureus and Salmonella Typhimurium in the intestinal fluids. Specifically, strong damage of the bacterial cell with leakage of cytoplasmic content, and cellular fragmentation were observed in S. Typhimurium and S. aureus. Even more important, probiotics increase the antimicrobial activity of the intestinal fluids at the different ages, from weaning (21 days old) to old age (180 days old). Intestinal antimicrobial activity stimulated by oral probiotics, do not influence significantly the composition of total anaerobic bacteria, lactobacilli and enterobacteria in the large intestine, at any age analyzed. This result, together with the antimicrobial activity observed against the same probiotic bacteria; endorse the regular consumption of probiotics without adverse effect on the intestinal homeostasis in healthy individuals. We demonstrate that oral probiotics increase intestinal antimicrobial activity and Paneth cells in order to strengthen epithelial barrier against pathogens. This effect would be another important mechanism by which probiotics protect the host mainly against infectious diseases.

10.
Br J Nutr ; 114(4): 566-76, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26179751

RESUMO

Orally administered probiotic micro-organisms are able to regulate the exacerbated immune response during the antigenic sensitisation process. The aim of the present study was to evaluate the potential efficacy of probiotic fermented milk (PFM) in preventing or treating allergy in an experimental model, and to investigate its underlying mechanisms. Ovoalbumin (OVA)-sensitised BALB/c mice were fed with PFM before the sensitisation procedure or fed continuously with PFM. At 7 and 15 d post-sensitisation, anti-OVA-specific IgE, IgG, IgG1 and IgG2a concentrations were measured in the serum and broncho-alveolar lavage fluid (BALF). Concentrations of interferon-γ (IFN-γ), IL-4, IL-10 and total secretory IgA (S-IgA) were measured in the supernatants of macerated lungs or in the BALF. The levels of IgA+, CD4+ and CD8+ T lymphocytes and F4/80+ cells were measured in the lungs by immunofluorescence. Inducible CD4+/CD25/Foxp3+ regulatory T (Treg) cells were evaluated in the lungs. PFM shifted the T helper (Th)2 profile response towards a Th1 response that led to the production of IgG instead of IgE, with increasing levels of IL-10 and IFN-γ that play an important role in immunomodulation exerted by PFM administration in sensitised mice. Anti-OVA-specific IgE levels were significantly decreased; however, there was no modification in the levels of anti-OVA-specific IgG and total S-IgA. PFM did not influence Treg cells in treated mice. Consumption of PFM could be a promising strategy in the amelioration of airway allergies, considering that the effect is mediated by the production of IgG through the activation of Th1 instead of the direct activation of Th2 cells to produce IgE.


Assuntos
Produtos Fermentados do Leite , Hipersensibilidade/tratamento farmacológico , Imunoglobulina G/metabolismo , Pulmão , Ovalbumina/imunologia , Probióticos/uso terapêutico , Equilíbrio Th1-Th2 , Animais , Bactérias , Líquido da Lavagem Broncoalveolar , Produtos Fermentados do Leite/microbiologia , Citocinas/metabolismo , Dieta , Fermentação , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Imunoglobulinas/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Ovalbumina/efeitos adversos , Linfócitos T Reguladores/metabolismo , Células Th1/metabolismo , Células Th2/metabolismo
11.
Nutrition ; 31(7-8): 1000-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26059375

RESUMO

OBJECTIVES: Obesity is a chronic disease associated with an inflammatory process in which cytokines play an important role. Probiotic microorganisms have been associated with modulation of the host immune system. The aim of this study was to evaluate the influence of the probiotic bacterium Lactobacillus casei CRL 431 on the cytokine response in a model of mice under high-fat diet (HFD) conditions. METHODS: BALB/c mice received a conventional balanced diet or an HFD. The test groups received milk, milk fermented by L. casei (FM), or L. casei as suspension in the drinking water. Proinflammatory and regulatory cytokine producer cells were evaluated in the small intestine and liver; the cytokine levels in the intestinal fluids were also evaluated. The percentages of immune cells as macrophages (F4/80), NKT, CD4+, CD8+ populations were determined in the liver. Adipocytes were also isolated and cultured to evaluate cytokines and the chemokine monocyte chemoattractant protein (MCP)-1 produced by them. RESULTS: The administration of probiotic L. casei CRL 431 exerted an anti-inflammatory response in mice fed an HFD, evidenced mainly by decreasing proinflammatory cytokines, such as interleukin (IL)-6, IL-17, and tumor necrosis factor-α. Probiotic administration also was associated with fewer immune-infiltrating cells in the liver of mice that received the HFD and decreased secretion of MCP-1 by the adipocytes. This last observation could be associated with less macrophage accumulation in the adipose tissues, which is characteristic in the obese host and contributes to maintaining the inflammatory response in this organ. The results obtained show an anti-inflammatory effect of L. casei CRL 431 when it is administered as a supplement of the HFD in a mouse model.


Assuntos
Citocinas/análise , Inflamação/dietoterapia , Lacticaseibacillus casei/metabolismo , Macrófagos/imunologia , Probióticos/administração & dosagem , Adipócitos/efeitos dos fármacos , Adipócitos/imunologia , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fermentação , Inflamação/imunologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/imunologia , Lacticaseibacillus casei/imunologia , Fígado/efeitos dos fármacos , Fígado/imunologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Obesos , Leite/microbiologia , Probióticos/uso terapêutico , Resultado do Tratamento
12.
Artigo em Inglês | MEDLINE | ID: mdl-25516152

RESUMO

There are numerous reports that show the benefits on the health attributed to the probiotic consumptions. Most of the studies were performed using animal models and only some of them were validated in controlled human trials. The present review is divided in two sections. In the first section we describe how the probiotic microorganisms can interact with the intestinal epithelial cells that are the first line of cell in the mucosal site, focusing in the studies of two probiotic strains: Lactobacillus casei DN-114001 (actually Lactobacillus paracasei CNCMI-1518) and Lactobacillus casei CRL 431. Then we describe same beneficial effects attributed to probiotic administration and the administration of fermented milks containing these microorganisms or potential probiotic yoghurt, principally on the immune system and on the intestinal barrier in different experimental mouse models like enteropathogenic infection, malnutrition, cancer and intestinal inflammation.


Assuntos
Alimento Funcional , Mucosa Gástrica/imunologia , Microbioma Gastrointestinal/fisiologia , Probióticos/administração & dosagem , Iogurte , Animais , Mucosa Gástrica/microbiologia , Nível de Saúde , Humanos , Probióticos/metabolismo , Iogurte/microbiologia
13.
Brain Behav Immun ; 35: 77-85, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24016865

RESUMO

Daily exposure to stressful situations affects the health of humans and animals. It has been shown that psychological stress affects the immune system and can exacerbate diseases. Probiotics can act as biological immunomodulators in healthy people, increasing both intestinal and systemic immune responses. The use of probiotics in stress situations may aid in reinforcing the immune system. The aim of this study was to evaluate the effect of a probiotic bacterium on the gut immune system of mice that were exposed to an experimental model of stress induced by food and mobility restriction. The current study focused on immune cells associated with the lamina propria of the intestine, including CD4+ and CD8+ T lymphocytes, CD11b+ macrophages, CD11c+ dendritic cells, and IgA+ B lymphocytes, as well as the concentrations of secretory IgA (S-IgA) and cytokine interferon gamma (INF-γ in intestinal fluid. We also evaluated the probiotic's influence on the gut microbiota. Probiotic administration increased IgA producing cells, CD4+ cells in the lamina propria of the small intestine, and S-IgA in the lumen; it also reduced the levels of IFN-γ that had increased during stress and improved the intestinal microbiota as measured by an increase in the lactobacilli population. The results obtained from administration of the probiotic to stressed mice suggest that the use of food containing these microorganisms may work as a palliative to reinforce the immune system.


Assuntos
Intestino Delgado/imunologia , Intestino Delgado/microbiologia , Lactobacillus , Probióticos , Estresse Psicológico/imunologia , Animais , Antígenos CD11/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Corticosterona/sangue , Modelos Animais de Doenças , Privação de Alimentos , Imunoglobulina A/metabolismo , Intestino Delgado/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microbiota , Restrição Física
14.
BMC Gastroenterol ; 11: 64, 2011 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-21615956

RESUMO

BACKGROUND: Malnutrition affects the immune response, causing a decrease of defence mechanisms and making the host more susceptible to infections. Probiotics can reconstitute the intestinal mucosa and stimulate local and systemic immunity. The aim of this work was evaluate the effects of a probiotic fermented milk as a complement of a re-nutrition diet, on the recovery of the intestinal barrier, and mucosal and systemic immune functions in a murine model of non-severe protein-energy-malnutrition. Its potential protection against Salmonella enterica serovar Typhimurium (S. Typhimurium) infection was also analyzed. METHODS: Mice were undernourished and divided into 3 groups according to the dietary supplement received during re-nutrition (milk, probiotic fermented milk or its bacterial free supernatant) and compared to well-nourished and malnourished mice. They were sacrificed previous to the re-nutrition and 5 days post re-nutrition. The phagocytic activity of macrophages from spleen and peritoneum and the changes in the intestinal histology and microbiota were evaluated. Different immune cell populations and cytokine productions were analyzed in the small intestine tissues. The effect of the re-nutrition supplements on the systemic immunity using OVA antigen and against an infection with S. Typhimurium was also studied. RESULTS: Probiotic fermented milk was the most effective re-nutrition diet that improved the intestinal microbiota. Its administration also increased the number of IgA+ cells, macrophages and dendritic cells. The production of different cytokine (IFN-γ, TNF-α, IL-12) by these cells and the phagocytic activity in peritoneum and spleen was also increased. This re-nutrition diet also stimulated the systemic immune response against OVA antigen which was diminished after the malnutrition period and also improved the host response against S. Typhimurium, decreasing the spread of pathogenic bacteria to the liver and the spleen. The importance of the metabolites released during milk fermentation was also demonstrated through the analysis of the bacterial free supernatant obtained from the probiotic fermented milk, but the whole product showed the best effects in the parameters evaluated in this study. CONCLUSIONS: The administration of probiotic fermented milk as a dietary supplement during the re-nutrition process in a murine immunodeficiency model by malnutrition could be a good adjuvant diet to improve the gut and systemic immune response for the protection against Salmonella infection.


Assuntos
Mucosa Intestinal/imunologia , Intestino Delgado/imunologia , Intestino Delgado/microbiologia , Probióticos/farmacologia , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Albuminas/imunologia , Análise de Variância , Animais , Bifidobacterium/crescimento & desenvolvimento , Contagem de Linfócito CD4 , Linfócitos T CD8-Positivos/efeitos dos fármacos , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Modelos Animais de Doenças , Fermentação , Células Caliciformes/efeitos dos fármacos , Mucosa Intestinal/citologia , Mucosa Intestinal/microbiologia , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Fenômenos Microbiológicos , Leite , Fagocitose/efeitos dos fármacos , Desnutrição Proteico-Calórica , Infecções por Salmonella/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...