Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 20714, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237558

RESUMO

In this study a real case multi-objective material and supplier selection problem in cardboard box production industries is studied. This problem for the first time optimizes the objective functions such as total wastage amounts remained from all raw sheets, total costs of the system including purchasing cost and transportation cost (including fixed and variable costs) of the raw sheets, and total overplus of produced cardboard boxes. To be closer to the real situations, as a novelty, the problem is formulated in belief-degree-based uncertain environment with normal distribution where this type of uncertainty applies the ideas of experts. A solution approach including two steps is proposed to solve the problem. In the first step, the proposed uncertain formulation is converted to a crisp form using a typical chance constrained programming scheme. In the second step, a new goal programming approach containing a piecewise penalty function is developed in order to solve the obtained multi-objective crisp formulation. In this approach, based on the ideas of experts, multiple goals are considered with different penalty values. A case study from cardboard box industries is considered to evaluate the proposed formulations and solution approach. According to the obtained results, the proposed solution approach is compared to similar approaches of the literature and its efficiency is studied.

2.
BMC Plant Biol ; 24(1): 750, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103803

RESUMO

BACKGROUND: Chickpea is a key pulse crop grown in the spring in dryland regions. The cold resistance potential of chickpeas allows for the development of genotypes with varying sowing dates to take advantage of autumn and winter rainfall, particularly in dryland regions. In this study, we assessed grain yield, plant height, 100-seed weight, days to maturity, and days to flowering of 17 chickpea genotypes in five autumn-sown dryland regions from 2019 to 2021. Additionally, the response of selected chickpea genotypes to cold stress was examined at temperatures of -4 °C, 4 °C, and 22 °C by analyzing biochemical enzymes. RESULTS: Mixed linear model of ANOVA revealed a significant genotype × environment interaction for all traits measured, indicating varying reactions of genotypes across test environments. This study reported low estimates of broad-sense heritability for days to flowering (0.34), days to maturity (0.13), and grain yield (0.08). Plant height and seed weight exhibited the highest heritability, with genotypic selection accuracies of 0.73 and 0.92, respectively. Moreover, partial least square regression highlighted the impactful role of rainfall during all months except of October, November, and February on grain yield and its interaction with environments in autumn-planted chickpeas. Among the genotypes studied, G9, G10, and G17 emerged as superior based on stability parameters and grain yield. In particular, genotype G9 stood out as a promising genotype for dryland regions, considering both MTSI and genotype by yield*trait aproaches. The cold assay indicated that - 4 °C is crucial for distinguishing between susceptible and resistant genotypes. The results showed the important role of the enzymes CAT and GPX in contributing to the cold tolerance of genotype G9 in autumn-sown chickpeas. CONCLUSIONS: Significant G×E for agro-morphological traits of chickpea shows prerequisite for multi-trial analysis. Chickpea`s direct root system cause that monthly rainfall during plant establishment has no critical role in its yield interaction with dryland environment. Considering the importance of agro-morphological traits and their direct and indirect effects on grain yield, the utilization of multiple-trait stability approches is propose. Evaluation of chickpea germplasm reaction against cold stress is necessary for autumn-sowing. Finally, autumn sowing of genotype FLIP 10-128 C in dryland conditions can led to significant crop performance.


Assuntos
Cicer , Genótipo , Estações do Ano , Cicer/genética , Cicer/crescimento & desenvolvimento , Cicer/enzimologia , Cicer/fisiologia
3.
Sci Rep ; 14(1): 20271, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39217234

RESUMO

Suspensions containing microencapsulated phase change materials (MPCMs) play a crucial role in thermal energy storage (TES) systems and have applications in building materials, textiles, and cooling systems. This study focuses on accurately predicting the dynamic viscosity, a critical thermophysical property, of suspensions containing MPCMs and MXene particles using Gaussian process regression (GPR). Twelve hyperparameters (HPs) of GPR are analyzed separately and classified into three groups based on their importance. Three metaheuristic algorithms, namely genetic algorithm (GA), particle swarm optimization (PSO), and marine predators algorithm (MPA), are employed to optimize HPs. Optimizing the four most significant hyperparameters (covariance function, basis function, standardization, and sigma) within the first group using any of the three metaheuristic algorithms resulted in excellent outcomes. All algorithms achieved a reasonable R-value (0.9983), demonstrating their effectiveness in this context. The second group explored the impact of including additional, moderate-significant HPs, such as the fit method, predict method and optimizer. While the resulting models showed some improvement over the first group, the PSO-based model within this group exhibited the most noteworthy enhancement, achieving a higher R-value (0.99834). Finally, the third group was analyzed to examine the potential interactions between all twelve HPs. This comprehensive approach, employing the GA, yielded an optimized GPR model with the highest level of target compliance, reflected by an impressive R-value of 0.999224. The developed models are a cost-effective and efficient solution to reduce laboratory costs for various systems, from TES to thermal management.

4.
BMC Plant Biol ; 24(1): 559, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877456

RESUMO

Rainfed regions have inconsistent spatial and temporal rainfall. So, these regions could face water deficiency during critical stages of crop growth. In this regard, multi-environment trials could play a key role in introducing stable genotypes with good performance across several rainfed regions. Grass pea, as a potential forage crop, is a resilient plant that could grow in unsuitable circumstances. In this study, agro-morphological attributes of 16 grass pea genotypes were examined in four semi-warm rain-fed regions during the years 2018-2021. The MLM analysis of variance showed a significant genotype-by-environment interaction (GEI) for dry yield, seed yield, days to maturity, days to flowering, and plant height of grass pea. The PLS (partial least squares) regression revealed that rainfall in the grass pea establishment stage (October and November) is meaningful. For grass pea cultivation, monthly rainfall during plant growth is important, especially in May, with an aim for seed yield. Regarding dry yield, G5, G10, G11, G12, G13, and G15 were selected as good performers and stable genotypes using DY × WAASB biplots, while SY × WAASB biplot manifested G2, G3, G12, and G13 as superior genotypes with stable seed yield. Considering equal weights for yield as well as the WAASB stability index (50/50), G13 was selected as the best one. Among test environments, E2 and E11 played a prominent role in distinguishing the above genotypes from other ones. In this study, MTSI (multi-trait stability index) analysis was applied to select a stable genotype, considering all measured agro-morphological traits simultaneously. Henceforth, the G5 and G15 grass pea genotypes were discerningly chosen due to their commendable performance in the WAASBY plot. In this context, G13 did not emerge as the winner based on MTSI; however, it exhibited an MTSI value in close proximity to the outer boundary of the circle. Consequently, upon comprehensive consideration of all traits, it is deduced that G5, G13, and G15 can be appraised as promising superior genotypes with stability across diverse environmental conditions.


Assuntos
Interação Gene-Ambiente , Genótipo , Chuva , Pisum sativum/genética , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento
5.
PLoS One ; 18(11): e0294694, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033138

RESUMO

The genus Agropyron has an important role in soil protection and forage production in rangelands. The investigation utilized 37 ISSR primers, resulting in the detection of 956 loci within the A. elongatum genome and 705 loci within the A. cristatum genome. The findings revealed a high level of polymorphism, with 97% of loci in A. elongatum and 84% of loci in A. cristatum exhibiting variability. Notably, the primer (AC)8GCT emerged as a promising candidate for evaluating genetic diversity due to its ability to amplify numerous loci in both species. Using both the UPGMA algorithm and Bayesian analysis, the examined Agropyron accessions were categorized into two subgroups based on their respective species. The Q values associated with these subgroups suggested that certain accessions, namely "G16," "G19," "G20," "G21," "G22," "G23," "G24," and "G25," displayed potential admixture genomes. An analysis of molecular variance (AMOVA) underscored the significance of within-species variability, which accounted for 69% of the overall diversity, compared to between-species variability at 31%. Various genetic diversity parameters, including Na, Ne, I, He, and the number of private loci, were found to be higher in A. elongatum when compared to A. cristatum. Furthermore, Jaccard similarity coefficients ranged from 0.33 to 0.66 in A. cristatum and from 0.25 to 0.7 in A. elongatum, indicating the extent of genetic relatedness among these species. Intriguingly, the study identified two and three heterotic groups in A. cristatum and A. elongatum, respectively, which could be harnessed in the development of synthetic varieties to exploit heterosis. The results also indicated that a small proportion of ISSR loci pairs (5.2% in A. elongatum and 0.5% in A. cristatum) exhibited significant levels of linkage disequilibrium (LD) (P≤0.05), suggesting the potential utility of LD-based association mapping in Agropyron species. In conclusion, this research sheds light on the genetic diversity of Agropyron species and provides valuable insights into their potential applications in soil protection and forage production, as well as the prospects for enhancing genetic variability and heterosis in these species.


Assuntos
Agropyron , Agropyron/genética , Pool Gênico , Irã (Geográfico) , Teorema de Bayes , Poaceae , Solo
6.
Sci Rep ; 12(1): 22054, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543900

RESUMO

In this study, the rheological behavior and dynamic viscosity of 10W40 engine oil in the presence of ternary-hybrid nanomaterials of cerium oxide (CeO2), graphene oxide (GO), and silica aerogel (SA) were investigated experimentally. Nanofluid viscosity was measured over a volume fraction range of VF = 0.25-1.5%, a temperature range of T = 5-55 °C, and a shear rate range of SR = 40-1000 rpm. The preparation of ternary-hybrid nanofluids involved a two-step process, and the nanomaterials were dispersed in SAE 10W40 using a magnetic stirrer and ultrasonic device. In addition, CeO2, GO, and SA nanoadditives underwent X-ray diffraction-based structural analysis. The non-Newtonian (pseudoplastic) behavior of ternary-hybrid nanofluid at all temperatures and volume fractions is revealed by analyzing shear stress, dynamic viscosity, and power-law model coefficients. However, the nanofluids tend to Newtonian behavior at low temperatures. For instance, dynamic viscosity declines with increasing shear rate between 4.51% (at 5 °C) and 41.59% (at 55 °C) for the 1.5 vol% nanofluid. The experimental results demonstrated that the viscosity of ternary-hybrid nanofluid declines with increasing temperature and decreasing volume fraction. For instance, assuming a constant SR of 100 rpm and a temperature increase from 5 to 55 °C, the dynamic viscosity increases by at least 95.05% (base fluid) and no more than 95.82% (1.5 vol% nanofluid). Furthermore, by increasing the volume fraction from 0 to 1.5%, the dynamic viscosity increases by a minimum of 14.74% (at 5 °C) and a maximum of 35.94% (at 55 °C). Moreover, different methods (COMBI algorithm, GMDH-type ANN, and RSM) were used to develop models for the nanofluid's dynamic viscosity, and their accuracy and complexity were compared. The COMBI algorithm with R2 = 0.9995 had the highest accuracy among the developed models. Additionally, RSM and COMBI were able to generate predictive models with the least complexity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA