Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sleep Adv ; 5(1): zpae015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525359

RESUMO

Brain oscillations of non-rapid eye movement sleep, including slow oscillations (SO, 0.5-1.5 Hz) and spindles (10-16 Hz), mirror underlying brain maturation across development and are associated with cognition. Hence, age-associated emergence and changes in the electrophysiological properties of these rhythms can lend insight into cortical development, specifically in comparisons between pediatric populations and typically developing peers. We previously evaluated age-associated changes in SOs in male patients with Duchenne muscular dystrophy (DMD), finding a significant age-related decline between 4 and 18 years. While primarily a muscle disorder, male patients with DMD can also have sleep, cognitive, and cortical abnormalities, thought to be driven by altered dystrophin expression in the brain. In this follow-up study, we characterized the age-associated changes in sleep spindles. We found that age-dependent spindle characteristics in patients with DMD, including density, frequency, amplitude, and duration, were consistent with age-associated trends reported in the literature for typically developing controls. Combined with our prior finding of age-associated decline in SOs, our results suggest that SOs, but not spindles, are a candidate intervention target to enhance sleep in patients with DMD.

3.
Front Hum Neurosci ; 18: 1342975, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38415278

RESUMO

Background: Given sleep's crucial role in health and cognition, numerous sleep-based brain interventions are being developed, aiming to enhance cognitive function, particularly memory consolidation, by improving sleep. Research has shown that Transcranial Alternating Current Stimulation (tACS) during sleep can enhance memory performance, especially when used in a closed-loop (cl-tACS) mode that coordinates with sleep slow oscillations (SOs, 0.5-1.5Hz). However, sleep tACS research is characterized by mixed results across individuals, which are often attributed to individual variability. Objective/Hypothesis: This study targets a specific type of SOs, widespread on the electrode manifold in a short delay ("global SOs"), due to their close relationship with long-term memory consolidation. We propose a model-based approach to optimize cl-tACS paradigms, targeting global SOs not only by considering their temporal properties but also their spatial profile. Methods: We introduce selective targeting of global SOs using a classification-based approach. We first estimate the current elicited by various stimulation paradigms, and optimize parameters to match currents found in natural sleep during a global SO. Then, we employ an ensemble classifier trained on sleep data to identify effective paradigms. Finally, the best stimulation protocol is determined based on classification performance. Results: Our study introduces a model-driven cl-tACS approach that specifically targets global SOs, with the potential to extend to other brain dynamics. This method establishes a connection between brain dynamics and stimulation optimization. Conclusion: Our research presents a novel approach to optimize cl-tACS during sleep, with a focus on targeting global SOs. This approach holds promise for improving cl-tACS not only for global SOs but also for other physiological events, benefiting both research and clinical applications in sleep and cognition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA