Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 25(7): 2456-67, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21482559

RESUMO

Being gated by high-energy nucleotides, cardiac ATP-sensitive potassium (K(ATP)) channels are exquisitely sensitive to changes in cellular energy metabolism. An emerging view is that proteins associated with the K(ATP) channel provide an additional layer of regulation. Using putative sulfonylurea receptor (SUR) coiled-coil domains as baits in a 2-hybrid screen against a rat cardiac cDNA library, we identified glycolytic enzymes (GAPDH and aldolase A) as putative interacting proteins. Interaction between aldolase and SUR was confirmed using GST pulldown assays and coimmunoprecipitation assays. Mass spectrometry of proteins from K(ATP) channel immunoprecipitates of rat cardiac membranes identified glycolysis as the most enriched biological process. Coimmunoprecipitation assays confirmed interaction for several glycolytic enzymes throughout the glycolytic pathway. Immunocytochemistry colocalized many of these enzymes with K(ATP) channel subunits in rat cardiac myocytes. The catalytic activities of aldolase and pyruvate kinase functionally modulate K(ATP) channels in patch-clamp experiments, whereas D-glucose was without effect. Overall, our data demonstrate close physical association and functional interaction of the glycolytic process (particularly the distal ATP-generating steps) with cardiac K(ATP) channels.


Assuntos
Frutose-Bifosfato Aldolase/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Canais KATP/metabolismo , Miocárdio/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Frutose-Bifosfato Aldolase/genética , Biblioteca Gênica , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Glicólise , Células HEK293 , Humanos , Immunoblotting , Imunoprecipitação , Canais KATP/genética , Masculino , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Receptores de Droga/genética , Receptores de Droga/metabolismo , Receptores de Sulfonilureias , Espectrometria de Massas em Tandem , Técnicas do Sistema de Duplo-Híbrido
2.
FASEB J ; 21(9): 2162-72, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17341678

RESUMO

K(ATP) channels are involved in regulating coronary function, but the contribution of endothelial K(ATP) channels remains largely uncharacterized. We generated a transgenic mouse model to specifically target endothelial K(ATP) channels by expressing a dominant negative Kir6.1 subunit only in the endothelium. These animals had no obvious overt phenotype and no early mortality. Histologically, the coronary endothelium in these animals was preserved. There was no evidence of increased susceptibility to ergonovine-induced coronary vasospasm. However, isolated hearts from these animals had a substantially elevated basal coronary perfusion pressure. The K(ATP) channel openers, adenosine and levcromakalim, decreased the perfusion pressure whereas the K(ATP) channel blocker glibenclamide failed to produce a vasoconstrictive response. The inducible endothelial nitric oxide pathway was intact, as evidenced by vasodilation caused by bradykinin. In contrast, basal endothelin-1 release was significantly elevated in the coronary effluent from these hearts. Treatment of mice with bosentan (endothelin-1 receptor antagonist) normalized the coronary perfusion pressure, demonstrating that the elevated endothelin-1 release was sufficient to account for the increased coronary perfusion pressure. Pharmacological blockade of K(ATP) channels led to elevated endothelin-1 levels in the coronary effluent of isolated mouse and rat hearts as well as enhanced endothelin-1 secretion from isolated human coronary endothelial cells. These data are consistent with a role for endothelial K(ATP) channels to control the coronary blood flow by modulating the release of the vasoconstrictor, endothelin-1.


Assuntos
Circulação Coronária/fisiologia , Endotelina-1/metabolismo , Endotélio Vascular/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Trifosfato de Adenosina/fisiologia , Animais , Bradicinina/farmacologia , Diazóxido/farmacologia , Eletrocardiografia/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Ergonovina/farmacologia , Exocitose/fisiologia , Regulação da Expressão Gênica , Genes Sintéticos , Glibureto/farmacologia , Canais KATP , Camundongos , Camundongos Transgênicos , Mutação Puntual , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/genética , Pressão , Ratos , Ratos Sprague-Dawley , Tolbutamida/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
3.
J Physiol ; 573(Pt 3): 595-609, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16613879

RESUMO

The Epac family of cAMP-regulated guanine nucleotide exchange factors (cAMPGEFs, also known as Epac1 and Epac2) mediate stimulatory actions of the second messenger cAMP on insulin secretion from pancreatic beta cells. Because Epac2 is reported to interact in vitro with the isolated nucleotide-binding fold-1 (NBF-1) of the beta-cell sulphonylurea receptor-1 (SUR1), we hypothesized that cAMP might act via Epac1 and/or Epac2 to inhibit beta-cell ATP-sensitive K+ channels (K(ATP) channels; a hetero-octomer of SUR1 and Kir6.2). If so, Epac-mediated inhibition of K(ATP) channels might explain prior reports that cAMP-elevating agents promote beta-cell depolarization, Ca2+ influx and insulin secretion. Here we report that Epac-selective cAMP analogues (2'-O-Me-cAMP; 8-pCPT-2'-O-Me-cAMP; 8-pMeOPT-2'-O-Me-cAMP), but not a cGMP analogue (2'-O-Me-cGMP), inhibit the function of K(ATP) channels in human beta cells and rat INS-1 insulin-secreting cells. Inhibition of K(ATP) channels is also observed when cAMP, itself, is administered intracellularly, whereas no such effect is observed upon administration N6-Bnz-cAMP, a cAMP analogue that activates protein kinase A (PKA) but not Epac. The inhibitory actions of Epac-selective cAMP analogues at K(ATP) channels are mimicked by a cAMP agonist (8-Bromoadenosine-3', 5'-cyclic monophosphorothioate, Sp-isomer, Sp-8-Br-cAMPS), but not a cAMP antagonist (8-Bromoadenosine-3', 5'-cyclic monophosphorothioate, Rp-isomer, Rp-8-Br-cAMPS), and are abrogated following transfection of INS-1 cells with a dominant-negative Epac1 that fails to bind cAMP. Because both Epac1 and Epac2 coimmunoprecipitate with full-length SUR1 in HEK cell lysates, such findings delineate a novel mechanism of second messenger signal transduction in which cAMP acts via Epac to modulate ion channel function, an effect measurable as the inhibition of K(ATP) channel activity in pancreatic beta cells.


Assuntos
Trifosfato de Adenosina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células Secretoras de Insulina/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular , AMP Cíclico/análogos & derivados , AMP Cíclico/antagonistas & inibidores , AMP Cíclico/farmacologia , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Cinética , Potenciais da Membrana , Canais de Potássio/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Ratos , Receptores de Droga/metabolismo , Receptores de Sulfonilureias , Tionucleotídeos/farmacologia
4.
J Biol Chem ; 280(46): 38464-70, 2005 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-16170200

RESUMO

The regulation of ATP-sensitive potassium (K(ATP)) channel activity is complex and a multitude of factors determine their open probability. Physiologically and pathophysiologically, the most important of these are intracellular nucleotides, with a long-recognized role for glycolytically derived ATP in regulating channel activity. To identify novel regulatory subunits of the K(ATP) channel complex, we performed a two-hybrid protein-protein interaction screen, using as bait the mouse Kir6.2 C terminus. Screening a rat heart cDNA library, we identified two potential interacting proteins to be the glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and triose-phosphate isomerase. The veracity of interaction was verified by co-immunoprecipitation techniques in transfected mammalian cells. We additionally demonstrated that pyruvate kinase also interacts with Kir6.2 subunits. The physiological relevance of these interactions is illustrated by the demonstration that native Kir6.2 protein similarly interact with GAPDH and pyruvate kinase in rat heart membrane fractions and that Kir6.2 protein co-localize with these glycolytic enzymes in rat ventricular myocytes. The functional relevance of our findings is demonstrated by the ability of GAPDH or pyruvate kinase substrates to directly block the K(ATP) channel under patch clamp recording conditions. Taken together, our data provide direct evidence for the concept that key enzymes involved in glycolytic ATP production are part of a multisubunit K(ATP) channel protein complex. Our data are consistent with the concept that the activity of these enzymes (possibly by ATP formation in the immediate intracellular microenvironment of this macromolecular K(ATP) channel complex) causes channel closure.


Assuntos
Regulação da Expressão Gênica , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/química , Piruvato Quinase/química , Triose-Fosfato Isomerase/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Bactérias/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , DNA/metabolismo , DNA Complementar/metabolismo , Eletroforese em Gel de Poliacrilamida , Eletrofisiologia , Glicólise , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Ventrículos do Coração/metabolismo , Hipóxia , Imunoglobulina G/química , Imunoprecipitação , Cinética , Camundongos , Microscopia de Fluorescência , Células Musculares/metabolismo , Mutação , Miocárdio/metabolismo , Técnicas de Patch-Clamp , Potássio/química , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Piruvato Quinase/metabolismo , Ratos , Ratos Sprague-Dawley , Transfecção , Técnicas do Sistema de Duplo-Híbrido
5.
Proc Natl Acad Sci U S A ; 101(14): 5075-80, 2004 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-15051870

RESUMO

Neuropathy target esterase (NTE) is a neuronal membrane protein originally identified for its property to be modified by organo-phosphates (OPs), which in humans cause neuropathy characterized by axonal degeneration. Drosophila mutants for the homolog gene of NTE, swisscheese (sws), indicated a possible involvement of sws in the regulation of axon-glial cell interaction during glial wrapping. However, the role of NTE/sws in mammalian brain pathophysiology remains unknown. To investigate NTE function in vivo, we used the cre/loxP site-specific recombination strategy to generate mice with a specific deletion of NTE in neuronal tissues. Here we show that loss of NTE leads to prominent neuronal pathology in the hippocampus and thalamus and also defects in the cerebellum. Absence of NTE resulted in disruption of the endoplasmic reticulum, vacuolation of nerve cell bodies, and abnormal reticular aggregates. Thus, these results identify a physiological role for NTE in the nervous system and indicate that a loss-of-function mechanism may contribute to neurodegenerative diseases characterized by vacuolation and neuronal loss.


Assuntos
Encéfalo/metabolismo , Hidrolases de Éster Carboxílico/fisiologia , Animais , Encéfalo/ultraestrutura , Hidrolases de Éster Carboxílico/genética , Células Cultivadas , Retículo Endoplasmático/metabolismo , Imuno-Histoquímica , Camundongos , Microscopia Eletrônica , Ratos
6.
Neurobiol Dis ; 14(1): 10-8, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-13678662

RESUMO

Immunization with amyloid-beta (Abeta) peptide in mouse models of Alzheimer's disease has been reported to decrease cerebral Abeta levels and improve behavioral deficits. Several mechanisms have been proposed, including antibody-induced phagocytosis of Abeta by cerebral microglia and increased efflux of Abeta from the brain to the periphery. The latter mechanism was suggested in mice undergoing acute, passive transfer of an Abeta monoclonal antibody. Here, PSAPP transgenic mice were actively immunized by a single intraperitoneal injection of synthetic Abeta followed by chronic intranasal administration of Abeta with the mucosal adjuvant, Escherichia coli heat-labile enterotoxin, LT, twice weekly for 8 weeks. Serum from Abeta-immunized mice had an average of 240 microg/ml of anti-Abeta-specific antibodies; these antibodies had epitope(s) within Abeta1-15 and were of immunoglobulin (Ig) isotypes IgG2b, IgG2a, and IgG1. Immunization led to a 75% decrease in plaque number (P < 0.0001) and a 58% decrease in Abetax-42 levels (P < 0.026) in brain, and gliosis and neuritic dystrophy were diminished. No pathological effects of the immunization were observed in kidney, spleen, or snout. Serum Abeta levels increased 28-fold in immunized mice (53.06 ng/ml) compared to controls (1.87 ng/ml). Most of the Abeta in the serum of the immunized mice was bound to antibodies. We conclude that following active immunization, anti-Abeta antibodies sequester serum Abeta and may increase central nervous system to serum Abeta clearance.


Assuntos
Peptídeos beta-Amiloides/administração & dosagem , Peptídeos beta-Amiloides/metabolismo , Córtex Cerebral/metabolismo , Vacinação/métodos , Peptídeos beta-Amiloides/sangue , Animais , Córtex Cerebral/efeitos dos fármacos , Feminino , Masculino , Taxa de Depuração Metabólica/fisiologia , Camundongos , Camundongos Mutantes , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...