Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 29(7): 1671-1680, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37365347

RESUMO

While over 100 genes have been associated with autism, little is known about the prevalence of variants affecting them in individuals without a diagnosis of autism. Nor do we fully appreciate the phenotypic diversity beyond the formal autism diagnosis. Based on data from more than 13,000 individuals with autism and 210,000 undiagnosed individuals, we estimated the odds ratios for autism associated to rare loss-of-function (LoF) variants in 185 genes associated with autism, alongside 2,492 genes displaying intolerance to LoF variants. In contrast to autism-centric approaches, we investigated the correlates of these variants in individuals without a diagnosis of autism. We show that these variants are associated with a small but significant decrease in fluid intelligence, qualification level and income and an increase in metrics related to material deprivation. These effects were larger for autism-associated genes than in other LoF-intolerant genes. Using brain imaging data from 21,040 individuals from the UK Biobank, we could not detect significant differences in the overall brain anatomy between LoF carriers and non-carriers. Our results highlight the importance of studying the effect of the genetic variants beyond categorical diagnosis and the need for more research to understand the association between these variants and sociodemographic factors, to best support individuals carrying these variants.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno Autístico/genética , Fenótipo , Heterozigoto , Encéfalo
2.
Mol Cell Neurosci ; 113: 103623, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33932580

RESUMO

The genetics of neurodevelopmental disorders (NDD) has made tremendous progress during the last few decades with the identification of more than 1,500 genes associated with conditions such as intellectual disability and autism. The functional roles of these genes are currently studied to uncover the biological mechanisms influencing the clinical outcome of the mutation carriers. To integrate the data, several databases and curated gene lists have been generated. Here, we provide an overview of the main databases focusing on the genetics of NDD, that are widely used by the medical and scientific communities, and extract a list of high confidence NDD genes (HC-NDD). This gene set can be used as a first filter for interpreting large scale omics dataset or for diagnostic purposes. Overall HC-NDD genes (N = 1,586) are expressed at very early stages of fetal brain development and enriched in several biological pathways such as chromosome organization, cell cycle, metabolism and synaptic function. Among those HC-NDD genes, 204 (12,9%) are listed in the synaptic gene ontology SynGO and are enriched in genes expressed after birth in the cerebellum and the cortex of the human brain. Finally, we point at several limitations regarding the relatively poor standardized information available, especially on the carriers of the mutations. Progress on the phenotypic characterization and genetic profiling of the carriers will be crucial to improve our knowledge on the biological mechanisms and on risk and protective factors for NDD.


Assuntos
Transtorno Autístico/genética , Bases de Dados Genéticas , Deficiências do Desenvolvimento/genética , Transtorno Autístico/metabolismo , Deficiências do Desenvolvimento/metabolismo , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos , Fenótipo , Mapas de Interação de Proteínas
3.
Genome Res ; 31(3): 484-496, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33441416

RESUMO

The human brain differs from that of other primates, but the genetic basis of these differences remains unclear. We investigated the evolutionary pressures acting on almost all human protein-coding genes (N = 11,667; 1:1 orthologs in primates) based on their divergence from those of early hominins, such as Neanderthals, and non-human primates. We confirm that genes encoding brain-related proteins are among the most strongly conserved protein-coding genes in the human genome. Combining our evolutionary pressure metrics for the protein-coding genome with recent data sets, we found that this conservation applied to genes functionally associated with the synapse and expressed in brain structures such as the prefrontal cortex and the cerebellum. Conversely, several genes presenting signatures commonly associated with positive selection appear as causing brain diseases or conditions, such as micro/macrocephaly, Joubert syndrome, dyslexia, and autism. Among those, a number of DNA damage response genes associated with microcephaly in humans such as BRCA1, NHEJ1, TOP3A, and RNF168 show strong signs of positive selection and might have played a role in human brain size expansion during primate evolution. We also showed that cerebellum granule neurons express a set of genes also presenting signatures of positive selection and that may have contributed to the emergence of fine motor skills and social cognition in humans. This resource is available online and can be used to estimate evolutionary constraints acting on a set of genes and to explore their relative contributions to human traits.


Assuntos
Encéfalo/metabolismo , Cognição , Evolução Molecular , Primatas/genética , Proteínas/genética , Animais , Encefalopatias/genética , Dano ao DNA/genética , Enzimas Reparadoras do DNA/genética , Humanos , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...