Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(15): 4477-4480, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090963

RESUMO

Besides major advantages for telecommunication applications, vertical-cavity surface-emitting lasers (VCSELs) have attracted interest for their potential for neuro-inspired computing, frequency comb generation, or high-frequency spin oscillations. In the meantime, strain applied to the laser structure has been shown to have a significant impact on the laser emission properties such as the polarization dynamics or birefringence. In this work, we further explore the influence of strain on VCSELs and how this effect could be used to fine-tune the laser wavelength. Through a comprehensive investigation, we demonstrate a consistent wavelength shift up to 1 nm and report a sensitivity between 0.12 and 0.18 nm/millistrain. We also record birefringence values up to 292 GHz. Our results show that a controlled strain level could be considered for fine wavelength tuning and possibly alleviate the selection of VCSEL for precise wavelength requirements.

2.
Opt Express ; 31(5): 8296-8306, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859945

RESUMO

Two VCSELs placed facing each other with one biased chip while the second chip is unbiased is shown as a promising alternative to the popularly used conventional SESAM mode-locked VECSEL to generate mode-locked pulses. We propose a theoretical model using time-delay differential rate equations and numerically show that the proposed dual-laser configuration functions as a typical gain-absorber system. Parameter space defined by laser facet reflectivities and current are used to show general trends in the exhibited nonlinear dynamics and pulsed solutions.

3.
Opt Lett ; 48(6): 1442-1445, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36946948

RESUMO

In this Letter, we experimentally demonstrate a method to improve the bandwidth and flatness of chaos from a laser diode using the optical injection of a frequency comb. Our results show that the injection of an optical frequency comb into a laser diode extends the area of chaotic dynamics to much broader injection parameters (injected power and detuning frequency). The increased number of injected lines and the injected comb spacing are used to control and significantly improve the chaos properties. We report a chaotic signal with a bandwidth of 32.8 GHz and a spectral flatness of 0.83.

4.
Phys Rev E ; 103(4-1): 042207, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34005856

RESUMO

We perform an experimental parametric study of the chaos generated by a laser diode subjected to phase-conjugate feedback. In addition to the typical figure of merit, i.e., chaos bandwidth, the corresponding spectral flatness and permutation entropy at delay is analyzed. Our experimental observations reveal that the chaos can be generated with a bandwidth of ≈29 GHz, a spectral flatness up to 0.75, and a permutation entropy at delay of up to 0.99. These optimized performances are maintained over a large range of parameters and have not been achieved in the conventional optical feedback configuration. Interestingly, reducing the pump current reduces the chaos bandwidth while keeping the spectral flatness and the permutation entropy at delay the same as observed for increased pump current. Our experimental findings are consistent with the presented numerical simulations produced using the Lang-Kobayashi model.

5.
Opt Express ; 28(21): 30379-30390, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115041

RESUMO

We experimentally and theoretically demonstrate the variety of the nonlinear dynamics exhibited by a single frequency semiconductor laser subjected to optical injection from a frequency comb. The injection parameters (the detuning and the injection strength) and the comb properties (comb spacing and the amplitude of the injected comb lines) are varied to unveil several dynamics such as injection locking, wave-mixing, chaotic dynamics, and unlocked time-periodic dynamics corresponding to new comb solutions. The asymmetry of the injected comb is shown to modify the size of the injection locking region in the parameter space, as well as the common properties between the new comb solutions observed and the injected comb.

6.
Opt Lett ; 45(4): 819-822, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32058478

RESUMO

An 852 nm semiconductor laser is experimentally subjected to phase-conjugate time-delayed feedback achieved through four-wave mixing in a photorefractive ($ {{\rm BaTiO}_{3}} $BaTiO3) crystal. Permutation entropy (PE) is used to uncover distinctive temporal signatures corresponding to the sub-harmonics of the round-trip time and the relaxation oscillations. Complex spatiotemporal outputs with high PE mostly upwards of $ \sim 0.85 $∼0.85 and chaos bandwidth (BW) up to $ \sim 31\;{\rm GHz} $∼31GHz are observed over feedback strengths up to 7%. The low-feedback region counterintuitively exhibits spatiotemporal reorganization, and the variation in the chaos BW is restricted within a small range of 1.66 GHz, marking the transition between the dynamics driven by the relaxation oscillations and the external cavity round-trip time. The immunity of the chaos BW and the complexity against such spatiotemporal reorganization show promise as an excellent candidate for secure communication applications.

7.
Opt Express ; 26(13): 16624-16638, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30119489

RESUMO

The different dynamical regions of an optically-pumped SESAM mode-locked, long-cavity VECSEL system with a fundamental pulse repetition frequency of ~200 MHz are investigated. The output power, captured as 250 µs long time series using a sampling rate of 200 GSa/s, for each operating condition of the system, is analyzed to determine the dynamical state. A wavelength range of 985-995 nm and optical pump powers of 10 W-16.3 W is studied. The system produces high quality fundamental passive mode-locking (FML) over an extensive part of the parameter space, but the different dynamical regions outside of FML are the primary focus of this study. We report five types of output: CW emission, FML, mode-locking of a few modes, double pulsing, and, semi-stable 4th harmonic mode-locking. The high sampling rate of the oscilloscope, combined with the long duration of the time series analyzed, enables insight into how the structure and substructure of pulses vary systematically over thousands of round trips of the laser cavity. Higher average output power is obtained in regions characterized by semi-stable 4th harmonic mode-locking than observed for FML, raising whether such average powers might be achieved for FML. The observed dynamic transitions from fundamental mode-locking provide insights into instability challenges in developing a stable, widely tunable, low repetition rate, turn-key system; and to inform future modelling of the system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA