Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Trends Ecol Evol ; 38(12): 1189-1202, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37648570

RESUMO

Microbiomics is the science of characterizing microbial community structure, function, and dynamics. It has great potential to advance our understanding of plant-soil-microbe processes and interaction networks which can be applied to improve ecosystem restoration. However, microbiomics may be perceived as complex and the technology is not accessible to all. The opportunities of microbiomics in restoration ecology are considerable, but so are the practical challenges. Applying microbiomics in restoration must move beyond compositional assessments to incorporate tools to study the complexity of ecosystem recovery. Advances in metaomic tools provide unprecedented possibilities to aid restoration interventions. Moreover, complementary non-omic applications, such as microbial inoculants and biopriming, have the potential to improve restoration objectives by enhancing the establishment and health of vegetation communities.


Assuntos
Ecossistema , Microbiota , Microbiologia do Solo , Ecologia , Solo/química , Plantas
3.
Nature ; 618(7967): 981-985, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225998

RESUMO

Soils store more carbon than other terrestrial ecosystems1,2. How soil organic carbon (SOC) forms and persists remains uncertain1,3, which makes it challenging to understand how it will respond to climatic change3,4. It has been suggested that soil microorganisms play an important role in SOC formation, preservation and loss5-7. Although microorganisms affect the accumulation and loss of soil organic matter through many pathways4,6,8-11, microbial carbon use efficiency (CUE) is an integrative metric that can capture the balance of these processes12,13. Although CUE has the potential to act as a predictor of variation in SOC storage, the role of CUE in SOC persistence remains unresolved7,14,15. Here we examine the relationship between CUE and the preservation of SOC, and interactions with climate, vegetation and edaphic properties, using a combination of global-scale datasets, a microbial-process explicit model, data assimilation, deep learning and meta-analysis. We find that CUE is at least four times as important as other evaluated factors, such as carbon input, decomposition or vertical transport, in determining SOC storage and its spatial variation across the globe. In addition, CUE shows a positive correlation with SOC content. Our findings point to microbial CUE as a major determinant of global SOC storage. Understanding the microbial processes underlying CUE and their environmental dependence may help the prediction of SOC feedback to a changing climate.


Assuntos
Sequestro de Carbono , Carbono , Ecossistema , Microbiologia do Solo , Solo , Carbono/análise , Carbono/metabolismo , Mudança Climática , Plantas , Solo/química , Conjuntos de Dados como Assunto , Aprendizado Profundo
4.
Sci Total Environ ; 759: 143467, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33199011

RESUMO

Peatlands are wetland ecosystems with great significance as natural habitats and as major global carbon stores. They have been subject to widespread exploitation and degradation with resulting losses in characteristic biota and ecosystem functions such as climate regulation. More recently, large-scale programmes have been established to restore peatland ecosystems and the various services they provide to society. Despite significant progress in peatland science and restoration practice, we lack a process-based understanding of how soil microbiota influence peatland functioning and mediate the resilience and recovery of ecosystem services, to perturbations associated with land use and climate change. We argue that there is a need to: in the short-term, characterise peatland microbial communities across a range of spatial and temporal scales and develop an improved understanding of the links between peatland habitat, ecological functions and microbial processes; in the medium term, define what a successfully restored 'target' peatland microbiome looks like for key carbon cycle related ecosystem services and develop microbial-based monitoring tools for assessing restoration needs; and in the longer term, to use this knowledge to influence restoration practices and assess progress on the trajectory towards 'intact' peatland status. Rapid advances in genetic characterisation of the structure and functions of microbial communities offer the potential for transformative progress in these areas, but the scale and speed of methodological and conceptual advances in studying ecosystem functions is a challenge for peatland scientists. Advances in this area require multidisciplinary collaborations between peatland scientists, data scientists and microbiologists and ultimately, collaboration with the modelling community. Developing a process-based understanding of the resilience and recovery of peatlands to perturbations, such as climate extremes, fires, and drainage, will be key to meeting climate targets and delivering ecosystem services cost effectively.


Assuntos
Ecossistema , Incêndios , Carbono , Ciclo do Carbono , Solo , Áreas Alagadas
5.
ISME J ; 14(9): 2236-2247, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32444813

RESUMO

Drought represents a significant stress to microorganisms and is known to reduce microbial activity and organic matter decomposition in Mediterranean ecosystems. However, we lack a detailed understanding of the drought stress response of microbial decomposers. Here we present metatranscriptomic and metabolomic data on the physiological response of in situ microbial communities on plant litter to long-term drought in Californian grass and shrub ecosystems. We hypothesised that drought causes greater microbial allocation to stress tolerance relative to growth pathways. In grass litter, communities from the decade-long ambient and reduced precipitation treatments had distinct taxonomic and functional profiles. The most discernable physiological signatures of drought were production or uptake of compatible solutes to maintain cellular osmotic balance, and synthesis of capsular and extracellular polymeric substances as a mechanism to retain water. The results show a clear functional response to drought in grass litter communities with greater allocation to survival relative to growth that could affect decomposition under drought. In contrast, communities on chemically more diverse and complex shrub litter had smaller physiological differences in response to long-term drought but higher investment in resource acquisition traits across precipitation treatments, suggesting that the functional response to drought is constrained by substrate quality. Our findings suggest, for the first time in a field setting, a trade off between microbial drought stress tolerance, resource acquisition and growth traits in plant litter microbial communities.


Assuntos
Secas , Microbiota , Expressão Gênica , Folhas de Planta , Plantas
7.
Nat Commun ; 9(1): 3591, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181597

RESUMO

Soil microorganisms act as gatekeepers for soil-atmosphere carbon exchange by balancing the accumulation and release of soil organic matter. However, poor understanding of the mechanisms responsible hinders the development of effective land management strategies to enhance soil carbon storage. Here we empirically test the link between microbial ecophysiological traits and topsoil carbon content across geographically distributed soils and land use contrasts. We discovered distinct pH controls on microbial mechanisms of carbon accumulation. Land use intensification in low-pH soils that increased the pH above a threshold (~6.2) leads to carbon loss through increased decomposition, following alleviation of acid retardation of microbial growth. However, loss of carbon with intensification in near-neutral pH soils was linked to decreased microbial biomass and reduced growth efficiency that was, in turn, related to trade-offs with stress alleviation and resource acquisition. Thus, less-intensive management practices in near-neutral pH soils have more potential for carbon storage through increased microbial growth efficiency, whereas in acidic soils, microbial growth is a bigger constraint on decomposition rates.


Assuntos
Carbono/metabolismo , Microbiologia do Solo , Solo/química , Agricultura , Biomassa , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Pradaria , Concentração de Íons de Hidrogênio , Consórcios Microbianos/fisiologia , Reino Unido
8.
mBio ; 8(4)2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28679747

RESUMO

Environmental factors relating to soil pH are important regulators of bacterial taxonomic biodiversity, yet it remains unclear if such drivers affect community functional potential. To address this, we applied whole-genome metagenomics to eight geographically distributed soils at opposing ends of a landscape soil pH gradient (where "low-pH" is ~pH 4.3 and "high-pH" is ~pH 8.3) and evaluated functional differences with respect to functionally annotated genes. First, differences in taxonomic and functional diversity between the two pH categories were assessed with respect to alpha diversity (mean sample richness) and gamma diversity (total richness pooled for each pH category). Low-pH soils, also exhibiting higher organic matter and moisture, consistently had lower taxonomic alpha and gamma diversity, but this was not apparent in assessments of functional alpha and gamma diversity. However, coherent changes in the relative abundances of annotated genes between low- and high-pH soils were identified; with strong multivariate clustering of samples according to pH independent of geography. Assessment of indicator genes revealed that the acidic organic-rich soils possessed a greater abundance of cation efflux pumps, C and N direct fixation systems, and fermentation pathways, indicating adaptations to both acidity and anaerobiosis. Conversely, high-pH soils possessed more direct transporter-mediated mechanisms for organic C and N substrate acquisition. These findings highlight the distinctive physiological adaptations required for bacteria to survive in soils of various nutrient availability and edaphic conditions and more generally indicate that bacterial functional versatility with respect to functional gene annotations may not be constrained by taxonomy.IMPORTANCE Over a set of soil samples spanning Britain, the widely reported reductions in bacterial taxonomic richness at low pH were found not to be accompanied by significant reductions in the richness of functional genes. However, consistent changes in the abundance of related functional genes were observed, characteristic of differential ecological and nutrient acquisition strategies between high-pH mineral soils and low-pH organic anaerobic soils. Our assessment at opposing ends of a soil gradient encapsulates the limits of functional diversity in temperate climates and identifies key pathways that may serve as indicators for soil element cycling and C storage processes in other soil systems. To this end, we make available a data set identifying functional indicators of the different soils; as well as raw sequences, which given the geographic scale of our sampling should be of value in future studies assessing novel genetic diversity of a wide range of soil functional attributes.


Assuntos
Adaptação Fisiológica , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Metagenômica/métodos , Microbiologia do Solo , Biodiversidade , Ecossistema , Genoma Bacteriano , Concentração de Íons de Hidrogênio , Filogenia , Solo/química , Reino Unido
9.
Front Microbiol ; 7: 1247, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27555839

RESUMO

Despite several lines of observational evidence, there is a lack of consensus on whether higher fungal:bacterial (F:B) ratios directly cause higher soil carbon (C) storage. We employed RNA sequencing, protein profiling and isotope tracer techniques to evaluate whether differing F:B ratios are associated with differences in C storage. A mesocosm (13)C labeled foliar litter decomposition experiment was performed in two soils that were similar in their physico-chemical properties but differed in microbial community structure, specifically their F:B ratio (determined by PLFA analyses, RNA sequencing and protein profiling; all three corroborating each other). Following litter addition, we observed a consistent increase in abundance of fungal phyla; and greater increases in the fungal dominated soil; implicating the role of fungi in litter decomposition. Litter derived (13)C in respired CO2 was consistently lower, and residual (13)C in bulk SOM was higher in high F:B soil demonstrating greater C storage potential in the F:B dominated soil. We conclude that in this soil system, the increased abundance of fungi in both soils and the altered C cycling patterns in the F:B dominated soils highlight the significant role of fungi in litter decomposition and indicate that F:B ratios are linked to higher C storage potential.

10.
Front Microbiol ; 6: 268, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25914679

RESUMO

Using a pulse chase (13)CO2 plant labeling experiment we compared the flow of plant carbon into macromolecular fractions of rhizosphere soil microorganisms. Time dependent (13)C dilution patterns in microbial cellular fractions were used to calculate their turnover time. The turnover times of microbial biomolecules were found to vary: microbial RNA (19 h) and DNA (30 h) turned over fastest followed by chloroform fumigation extraction-derived soluble cell lysis products (14 days), while phospholipid fatty acids (PLFAs) had the slowest turnover (42 days). PLFA/NLFA (13)C analyses suggest that both mutualistic arbuscular mycorrhizal and saprophytic fungi are dominant in initial plant carbon uptake. In contrast, high initial (13)C enrichment in RNA hints at bacterial importance in initial C uptake due to the dominance of bacterial derived RNA in total extracts of soil RNA. To explain this discrepancy, we observed low renewal rate of bacterial lipids, which may therefore bias lipid fatty acid based interpretations of the role of bacteria in soil microbial food webs. Based on our findings, we question current assumptions regarding plant-microbe carbon flux and suggest that the rhizosphere bacterial contribution to plant assimilate uptake could be higher. This highlights the need for more detailed quantitative investigations with nucleic acid biomarkers to further validate these findings.

11.
Nat Commun ; 6: 6707, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25848862

RESUMO

Plant diversity strongly influences ecosystem functions and services, such as soil carbon storage. However, the mechanisms underlying the positive plant diversity effects on soil carbon storage are poorly understood. We explored this relationship using long-term data from a grassland biodiversity experiment (The Jena Experiment) and radiocarbon ((14)C) modelling. Here we show that higher plant diversity increases rhizosphere carbon inputs into the microbial community resulting in both increased microbial activity and carbon storage. Increases in soil carbon were related to the enhanced accumulation of recently fixed carbon in high-diversity plots, while plant diversity had less pronounced effects on the decomposition rate of existing carbon. The present study shows that elevated carbon storage at high plant diversity is a direct function of the soil microbial community, indicating that the increase in carbon storage is mainly limited by the integration of new carbon into soil and less by the decomposition of existing soil carbon.


Assuntos
Biodiversidade , Carbono , Pradaria , Plantas , Microbiologia do Solo , Solo/química , Radioisótopos de Carbono , Ecossistema , Alemanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...