Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Chem ; 5(8): 517, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37117590
2.
J Am Chem Soc ; 142(25): 11042-11049, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32469219

RESUMO

Dual photocatalysis and nickel catalysis can effect cross-coupling under mild conditions, but little is known about the in situ kinetics of this class of reactions. We report a comprehensive kinetic examination of a model carboxylate O-arylation, comparing a state-of-the-art homogeneous photocatalyst (Ir(ppy)3) with a competitive heterogeneous photocatalyst (graphitic carbon nitride). Experimental conditions were adjusted such that the nickel catalytic cycle is saturated with excited photocatalyst. This approach was designed to remove the role of the photocatalyst, by which only the intrinsic behaviors of the nickel catalytic cycles are observed. The two reactions did not display identical kinetics. Ir(ppy)3 deactivates the nickel catalytic cycle and creates more dehalogenated side product. Kinetic data for the reaction using Ir(ppy)3 supports a turnover-limiting reductive elimination. Graphitic carbon nitride gave higher selectivity, even at high photocatalyst-to-nickel ratios. The heterogeneous reaction also showed a rate dependence on aryl halide, indicating that oxidative addition plays a role in rate determination. The results argue against the current mechanistic hypothesis, which states that the photocatalyst is only involved to trigger reductive elimination.

3.
Angew Chem Int Ed Engl ; 58(28): 9575-9580, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31050132

RESUMO

Cross-coupling reactions mediated by dual nickel/photocatalysis are synthetically attractive but rely mainly on expensive, non-recyclable noble-metal complexes as photocatalysts. Heterogeneous semiconductors, which are commonly used for artificial photosynthesis and wastewater treatment, are a sustainable alternative. Graphitic carbon nitrides, a class of metal-free polymers that can be easily prepared from bulk chemicals, are heterogeneous semiconductors with high potential for photocatalytic organic transformations. Here, we demonstrate that graphitic carbon nitrides in combination with nickel catalysis can induce selective C-O cross-couplings of carboxylic acids with aryl halides, yielding the respective aryl esters in excellent yield and selectivity. The heterogeneous organic photocatalyst exhibits a broad substrate scope, is able to harvest green light, and can be recycled multiple times. In situ FTIR was used to track the reaction progress to study this transformation at different irradiation wavelengths and reaction scales.

4.
J Am Chem Soc ; 133(27): 10352-5, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21619004

RESUMO

A highly efficient enantioselective C-H insertion of azavinyl carbenes into unactivated alkanes has been developed. These transition metal carbenes are directly generated from readily available and stable 1-sulfonyl-1,2,3-triazoles in the presence of chiral Rh(II) carboxylates and are used for C-H functionalization of alkanes to access a variety of ß-chiral sulfonamides.


Assuntos
Alcanos/química , Metano/análogos & derivados , Ródio/química , Sulfonamidas/síntese química , Carbono/química , Catálise , Metano/química , Estereoisomerismo , Sulfonamidas/química , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...