Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Trop Anim Health Prod ; 55(5): 350, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37796345

RESUMO

Complex urbanisation dynamics, on the one hand, create a high demand for animal products, and on the other hand put enormous pressure on arable land with negative consequences for animal feed production. To explore the impact of accelerated urbanisation on dairy cattle health in urban farming systems, 151 farmers from different parts of the Greater Bengaluru metropolitan area in India were individually interviewed on aspects addressing cattle management and cattle health. In addition, 97 samples of forages from the shores of 10 different lakes, and vegetable leftovers used in cattle feeding were collected for nutritional analysis. Along with the use of cultivated forages, crop residues, and concentrate feed, 47% and 77% of the farmers occasionally or frequently used lake fodder and food leftovers, respectively. Nutritionally, lake fodder corresponded to high-quality pasture vegetation, but 43% of the samples contained toxic heavy metals such as arsenic, cadmium, chromium, and lead above official critical threshold levels. Therefore, lake fodder may affect cows' health if consumed regularly; however, heavy metal concentrations varied between lakes (P < 0.05), but not between fodder types (P > 0.05). Although 60% of the interviewed farmers believed that their cows were in good health, logit model applications revealed that insufficient drinking water supply and the use of lake fodder negatively impacted cattle health (P < 0.05). While it remains unknown if regular feeding of lake fodder results in heavy metal accumulation in animal products, farmers and farm advisors must address this and other urbanization-related challenges to protect cattle health.


Assuntos
Ração Animal , Urbanização , Feminino , Animais , Bovinos , Índia , Agricultura , Cromo
2.
Front Microbiol ; 13: 1048288, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36478863

RESUMO

A study was conducted to investigate the impact of an anti-methanogenic product supplementation on enteric methane emissions, whole rumen metagenome and ruminal fermentation in sheep. Twelve adult male sheep were randomly divided into two groups of six animals each. Animals were fed ad libitum on a total mixed ration either without (CON) or with an anti-methanogenic supplement (Harit Dhara-HD). The anti-methanogenic supplement contained 22.1% tannic acid in a 3: 1 ratio of condensed and hydrolysable tannins. The supplementation of product revealed a significant reduction in daily enteric methane emission (21.9 vs. 17.2 g/d) and methane yield (23.2 vs. 18.2) without affecting the nutrient intake and digestibility. However, the propionate concentration in the HD treatment group was significantly higher than in the CON group. On the contrary, the ammonia nitrogen concentration was lower. The anti-methanogenic supplement significantly decreased the ruminal protozoa in the HD treatment group. Whole rumen metagenome analysis revealed that the core bacterial (Bacteroidetes and Firmicutes) and archaeal communities (Methanobrevibacter and Methanosarcina) were comparable between the CON and HD treatment groups. However, the supplementation of anti-methanogenic product led to a considerable reduction in the abundance of Proteobacteria, whereas the abundance of Lentisphaerae was greater. The supplementation significantly decreased the abundance of Methanocaldococcus, Methanococcoides, Methanocella, and Methanoregula methanogens. A total of 36 KO related to methanogenesis were identified in this study. The activities of formate dehydrogenase (EC 1.8.98.6) and tetrahydromethanopterin S-methyltransferase (EC 2.1.1.86) were significantly lowered by the anti-methanogenic product supplementation in sheep. In conclusion, the anti-methanogenic supplement has the potential to decrease enteric methane emission (~22%) at the recommended level (5% of DM) of supplementation. The contribution of minor methanogens vulnerable to supplementation to rumen methanogenesis is not known; hence, the culturing of these archaea should be taken on priority for determining the impact on overall rumen methanogenesis.

3.
Front Microbiol ; 13: 780073, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369442

RESUMO

Supplementation with lipids and oils is one of the most efficient strategies for reducing enteric methane emission. However, high costs and adverse impacts on fiber degradation restrict the use of conventional oils. Silkworm pupae, a non-conventional oil source rarely used for human consumption in India, could be one of the cheaper alternatives for methane mitigation. The objective of this study was to investigate the effect on sheep of long-term supplementation (180 days) of silkworm pupae oil (SWPO) with two distinct supplementation regimes (daily and biweekly) on daily enteric methane emission, methane yield, nutrient digestibility, rumen fermentation, ruminal archaea community composition, and protozoal population. The effect of the discontinuation of oil supplementation on enteric methane emission was also investigated. Eighteen adult male sheep, randomly divided into three groups (n = 6), were provisioned with a mixed diet consisting of 10.1% crude protein (CP) and 11.7 MJ/kg metabolizable energy formulated using finger millet straw and concentrate in a 55:45 ratio. SWPO was supplemented at 2% of dry matter intake (DMI) in test groups either daily (CON) or biweekly (INT), while no oil was supplemented in the control group (CTR). DMI (p = 0.15) and CP (p = 0.16) in the CON and INT groups were similar to that of the CTR group; however, the energy intake (MJ/kg) in the supplemented groups (CON and INT) was higher (p < 0.001) than in CTR. In the CON group, body weight gain (kg, p = 0.02) and average daily gain (g, p = 0.02) were both higher than in the CTR. The daily methane emission in the CON (17.5 g/day) and INT (18.0 g/day) groups was lower (p = 0.01) than the CTR group (23.6 g/day), indicating a reduction of 23-25% due to SWPO supplementation. Similarly, compared with the CTR group, methane yields (g/kg DMI) in test groups were also significantly lower (p < 0.01). The transient nature of the anti-methanogenic effect of SWPO was demonstrated in the oil discontinuation study, where daily methane emission reverted to pre-supplementation levels after a short period. The recorded methanogens were affiliated to the families Methanobacteriaceae, Methanomassilliicoccaceae, and Methanosarcinaceae. The long-term supplementation of oil did not induce any significant change in the rumen archaeal community, whereas minor species such as Group3b exhibited differing abundance among the groups. Methanobrevibacter, irrespective of treatment, was the largest genus, while Methanobrevibacter gottschalkii was the dominant species. Oil supplementation in CON and INT compared with CTR decreased (p < 0.01) the numbers of total protozoa (× 107 cells/ml), Entodiniomorphs (× 107 cells/ml), and Holotrichs (× 106 cells/ml). SWPO continuous supplementation (CON group) resulted in the largest reduction in enteric methane emission and relatively higher body weight gain (p = 0.02) in sheep.

4.
Front Vet Sci ; 8: 625189, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996959

RESUMO

The current changing climate trend poses a threat to the productive efficacy and welfare of livestock across the globe. This review is an attempt to synthesize information pertaining to the applications of various genomic tools and statistical models that are available to identify climate-resilient dairy cows. The different functional and economical traits which govern milk production play a significant role in determining the cost of milk production. Thus, identification of these traits may revolutionize the breeding programs to develop climate-resilient dairy cattle. Moreover, the genotype-environment interaction also influences the performance of dairy cattle especially during a challenging situation. The recent advancement in molecular biology has led to the development of a few biotechnological tools and statistical models like next-generation sequencing (NGS), microarray technology, whole transcriptome analysis, and genome-wide association studies (GWAS) which can be used to quantify the molecular mechanisms which govern the climate resilience capacity of dairy cows. Among these, the most preferred option for researchers around the globe was GWAS as this approach jointly takes into account all the genotype, phenotype, and pedigree information of farm animals. Furthermore, selection signatures can also help to demarcate functionally important regions in the genome which can be used to detect potential loci and candidate genes that have undergone positive selection in complex milk production traits of dairy cattle. These identified biomarkers can be incorporated in the existing breeding policies using genomic selection to develop climate-resilient dairy cattle.

5.
Vet World ; 13(3): 586-592, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32367968

RESUMO

AIM: The present study was undertaken to evaluate the effect of variable levels of silkworm pupae oil and roughage: concentrate ratio on in vitro methane production, fermentation characteristics, and rumen protozoa population. MATERIALS AND METHODS: In vitro gas production study (24 h) was performed with graded levels of silkworm pupae oil, namely, 0.5, 1, 2, 4, and 5% of the basal diet and four variable dietary regimes consisting roughage and concentrate in different proportions (70:30, 60:40, 50:50, and 40:60). At the end of incubation, gas samples were analyzed for methane, while fermented rumen liquor was used for protozoa enumeration. A separate set of incubations was carried out for the determination of in vitro dry matter digestibility. RESULTS: Results from the in vitro studies revealed no adverse impact of the silkworm pupae oil supplementation up to 2% level on total gas production. However, supplementation beyond 2% has shown a reduction in total gas production. Incubation with variable levels (0.5-5%) of silkworm pupae oil with different dietary regimes indicated negligible (3-5%) to a substantial reduction (25-30%) on methane production. A graded decrement in methane production was recorded with increasing levels of silkworm pupae oil. Similarly, the protozoal populations were decreased from 10 to 51.5% with graded levels of silkworm pupae oil in different dietary regimes as studies did not reveal any significant (p>0.05) variation between 2 and 4% of oil supplementation. CONCLUSION: The silkworm pupae oil supplementation at 2% level decreases methane production by 12-15% without any adverse impact on feed fermentation. Oil supplementation may have a more pronounced effect on methane reduction if added to high roughage diet at in vitro conditions. However, in vivo, studies in ruminants are warranted to confirm the methane reduction with silkworm pupae oil supplementation.

6.
Vet World ; 11(6): 809-818, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30034174

RESUMO

AIM: The aim of the study was to explore the anti-methanogenic potential of phyto-sources from Northeast region of the country and assess the effect on rumen fermentation characteristics and protozoa for their likely inclusion in animal diet to reduce methane emission. MATERIALS AND METHODS: Twenty phyto-sources were collected from Northeast state, Assam, during March to April 2014. Phyto-sources were analyzed for their tannin content followed by screening for methane mitigation potential using in vitro system. The effect of tannin on methane production and other fermentation parameters was confirmed by attenuating the effect of tannin with polyethylene glycol (PEG)-6000 addition. About 200 mg dried phyto-source samples were incubated for 24 h in vitro, and volume of gas produced was recorded. The gas sample was analyzed on gas chromatograph for the proportion of methane in the sample. The effect of phyto-sources on rumen fermentation characteristics and protozoal population was determined using standard methodologies. RESULTS: Results from studies demonstrated that Litchi chinensis, Melastoma malabathricum, Lagerstroemia speciosa, Terminalia chebula, and Syzygium cumini produced comparatively less methane, while Christella parasitica, Leucas linifolia, Citrus grandis, and Aquilaria malaccensis produced relatively more methane during in vitro incubation. An increase (p<0.05) in gas and methane production from the phyto-sources was observed when incubated with PEG-6000. Entodinimorphs were prominent ciliates irrespective of the phyto-sources, while holotrichs represented only small fraction of protozoa. An increase (p<0.05) in total protozoa, entodinimorphs, and holotrichs was noted when PEG-6000 added to the basal substrate. Our study confirmed variable impact of phyto-sources on total volatile fatty acid production and ammonia-N. CONCLUSION: It may be concluded that L. chinensis, M. malabathricum, L. speciosa, S. cumini, and T. chebula are having potent methane suppressing properties as observed in vitro in 24 h. These leaves could be supplemented in the animal diet for reducing methane emission; however, in vivo trials are warranted to confirm the methane inhibitory action and optimize the level of supplementation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...