Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci Res ; 98(7): 1433-1456, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32170776

RESUMO

Perivascular astrocyte processes (PAP) surround cerebral endothelial cells (ECs) and modulate the strengthening of tight junctions to influence blood-brain barrier (BBB) permeability. Morphologically altered astrocytes may affect barrier properties and trigger the onset of brain pathologies. However, astrocyte-dependent mediators of these events remain poorly studied. Here, we show a pharmacologically driven elevated expression and release of growth/differentiation factor 15 (GDF15) in rat primary astrocytes and cerebral PAP. GDF15 has been shown to possess trophic properties for motor neurons, prompting us to hypothesize similar effects on astrocytes. Indeed, its increased expression and release occurred simultaneously to morphological changes of astrocytes in vitro and PAP, suggesting modulatory effects of GDF15 on these cells, but also neighboring EC. Administration of recombinant GDF15 was sufficient to promote astrocyte remodeling and enhance barrier properties between ECs in vitro, whereas its pharmacogenetic abrogation prevented these effects. We validated our findings in male high anxiety-related behavior rats, an animal model of depressive-like behavior, with shrunk PAP associated with reduced expression of the junctional protein claudin-5, which were both restored by a pharmacologically induced increase in GDF15 expression. Thus, we identified GDF15 as an astrocyte-derived trigger of astrocyte process remodeling linked to enhanced tight junction strengthening at the BBB.


Assuntos
Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Neurônios Motores/metabolismo , Junções Íntimas/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Barreira Hematoencefálica/diagnóstico por imagem , Linhagem Celular Tumoral , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fator 15 de Diferenciação de Crescimento/farmacologia , Masculino , Neurônios Motores/efeitos dos fármacos , Permeabilidade , Ratos , Ratos Wistar , Junções Íntimas/efeitos dos fármacos
2.
Transl Psychiatry ; 9(1): 223, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519869

RESUMO

Major depressive disorder is the main cause of disability worldwide with imperfect treatment options. However, novel therapeutic approaches are currently discussed, from augmentation strategies to novel treatments targeting the immune system or the microbiome-gut-brain axis. Therefore, we examined the potential beneficial effects of minocycline, a tetracycline antibiotic with pleiotropic, immunomodulatory action, alone or as augmentation of escitalopram on behavior, prefrontal microglial density, and the gut microbiome in rats selectively bred for high anxiety-like behavior (HAB). We show that concomitant with their high innate anxiety and depression, HABs have lower microglial numbers in the infralimbic and prelimbic prefrontal cortex and an altered gut microbiota composition compared with controls. Three weeks of minocycline treatment alleviated the depressive-like phenotype, further reduced microglial density, exclusively in male HAB rats, and reduced plasma concentrations of pro-inflammatory cytokines. However, coadministration of escitalopram, which had no effect alone, prevented these minocycline-induced effects. Moreover, minocycline led to a robust shift in cecal microbial composition in both HABs and rats non-selected for anxiety-like behavior. Minocycline markedly increased relative abundance of Lachnospiraceae and Clostridiales Family XIII, families known for their butyrate production, with a corresponding increase and positive correlation in plasma 3-OH-butyrate levels in a trait-dependent manner. Thus, our data suggest that the antidepressant effect of minocycline is sex- and trait-dependent, associated with a reduced microglial number in the prefrontal cortex, and with changes in microbial composition and their metabolites. These results further support the microbiome-gut-brain axis as potential target in the treatment of depression.


Assuntos
Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Microglia/efeitos dos fármacos , Minociclina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ansiedade/metabolismo , Ansiedade/microbiologia , Ceco/efeitos dos fármacos , Ceco/microbiologia , Modelos Animais de Doenças , Feminino , Masculino , Microglia/metabolismo , Minociclina/uso terapêutico , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar , Resultado do Tratamento
3.
Front Mol Neurosci ; 11: 127, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29706868

RESUMO

Interactions among endothelial cells (EC) forming blood vessels and their surrounding cell types are essential to establish the blood-brain barrier (BBB), an integral part of the neurovascular unit (NVU). Research on the NVU has recently seen a renaissance to especially understand the neurobiology of vascular and brain pathologies and their frequently occurring comorbidities. Diverse signaling molecules activated in the near proximity of blood vessels trigger paracellular pathways which regulate the formation and stabilization of tight junctions (TJ) between EC and thereby influence BBB permeability. Among regulatory molecules, the erythropoietin-producing-hepatocellular carcinoma receptors (EphR) and their Eph receptor-interacting signals (ephrins) play a pivotal role in EC differentiation, angiogenesis and BBB integrity. Multiple EphR-ligand interactions between EC and other cell types influence different aspects of angiogenesis and BBB formation. Such interactions additionally control BBB sealing properties and thus the penetration of substances into the brain parenchyma. Thus, they play critical roles in the healthy brain and during the pathogenesis of brain disorders. In this mini-review article, we aim at integrating the constantly growing literature about the functional roles of the EphR/ephrin system for the development of the vascular system and the BBB and in the pathogenesis of neurovascular and neuropsychiatric disorders. We suggest the hypothesis that a disrupted EphR/ephrin signaling at the BBB might represent an underappreciated molecular hub of disease comorbidity. Finally, we propose the possibility that the EphR/ephrin system bears the potential of becoming a novel target for the development of alternative therapeutic treatments, focusing on such comorbidities.

4.
Front Cell Neurosci ; 10: 8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26869881

RESUMO

Morphological alterations in astrocytes are characteristic for post mortem brains of patients affected by major depressive disorder (MDD). Recently, a significant reduction in the coverage of blood vessels (BVs) by aquaporin-4 (AQP-4)-positive astrocyte endfeet has been shown in the prefrontal cortex (PFC) of MDD patients, suggesting that either alterations in the morphology of endfeet or in AQP-4 distribution might be responsible for the disease phenotype or constitute a consequence of its progress. Antidepressant drugs (ADs) regulate the expression of several proteins, including astrocyte-specific ones. Thus, they may target AQP-4 to induce morphological changes in astrocytes and restore their proper shape or relocate AQP-4 to endfeet. Using an animal model of depression, rats selectively bred for high anxiety-like behavior (HAB), we confirmed a reduced coverage of BVs in the adult PFC by AQP-4-immunoreactive (AQP-4-IR) astrocyte processes with respect to non-selected Wistar rats (NAB), thereby validating it for our study. A further evaluation of the morphology of astrocyte in brain slices (ex vivo) and in vitro using an antibody against the astrocyte-specific cytoskeletal protein glial fibrillary acidic protein (GFAP) revealed that HAB astrocytes extended less processes than NAB cells. Furthermore, short-term drug treatment in vitro with the AD fluoxetine (FLX) was sufficient to increase the plasticity of astrocyte processes, enhancing their number in NAB-derived cells and recovering their basal number in HAB-derived cells. This enhanced FLX-dependent plasticity occurred, however, only in the presence of intact AQP-4, as demonstrated by the lack of effect after the downregulation of AQP-4 with RNAi in both NAB and HAB cells. Nonetheless, a similar short-term treatment did neither modulate the coverage of BVs with AQP-4-positive astrocyte endfeet in NAB nor in HAB rats, although dosage and time of treatment were sufficient to fully recover GFAP expression in HAB brains. Thus, we suggest that longer treatment regimes may be needed to properly restore the coverage of BVs or to relocate AQP-4 to astrocyte endfeet. In conclusion, FLX requires AQP-4 to modulate the plasticity of astrocyte processes and this effect might be essential to re-establish a functional glia-vasculature interface necessary for a physiological communication between bloodstream and brain parenchyma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...