Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446270

RESUMO

Carbon nanotubes (CNTs) are used in applications ranging from electrical engineering to medical device manufacturing. It is well known that the addition of nanotubes can influence the mechanical properties of various industrial materials, including plastics. Electrospinning is a popular method for fabricating nanomaterials, widely suggested for polymer scaffold manufacturing. In this study, we aimed to describe the influence of single-walled carbon nanotube (SWCNT) suspensions on polymeric poured films and electrospun scaffolds and to investigate their structural and mechanical properties obtained from various compositions. To obtain films and electrospun scaffolds of 8 mm diameter, we used poly-ε-caprolactone (PCL) and poly(cyclohexene carbonate) (PCHC) solutions containing several mass fractions of SWCNT. The samples were characterized using tensile tests, atomic force and scanning electronic microscopy (AFM and SEM). All the studied SWCNT concentrations were shown to decrease the extensibility and strength of electrospun scaffolds, so SWCNT use was considered unsuitable for this technique. The 0.01% mass fraction of SWCNT in PCL films increased the polymer strength, while fractions of 0.03% and more significantly decreased the polymer strength and extensibility compared to the undoped polymer. The PHCH polymeric films showed a similar behavior with an extremum at 0.02% concentration for strength at break.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Engenharia Tecidual/métodos , Poliésteres/química , Suspensões , Polímeros , Alicerces Teciduais/química
2.
Materials (Basel) ; 15(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35806657

RESUMO

In this work, a new two-stage approach to the deposition of high-entropy alloy coatings is proposed. At the first stage, a composite precursor coating is formed by detonation spraying of the metal powder mixtures. At the second stage, the precursor coating is re-melted by a laser, and the formation of multi-component solid solution phases can be expected upon solidification. The feasibility of the proposed approach was validated using three different mixtures of Fe, Ni, Cu, Co and Al powders. It was shown that detonation spraying allows forming composite coatings with a uniform distribution of the lamellae of different metals. The results of the structural analysis of the laser-treated coatings suggest that complete alloying occurred in the melt and face-centered cubic solid solutions formed in the coatings upon cooling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...