Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Psychopharmacol ; 37(11): 1149-1156, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37842884

RESUMO

BACKGROUND: In clinical studies, psychedelics including psilocybin and D-lysergic acid diethylamide (LSD) demonstrate rapid and persistent antidepressant effects. Since the effective treatment with psychedelics is usually provided with psychotherapy, it is debatable whether their prolonged efficacy can be observed in infrahuman species. Preclinical reports on psychedelics' effects most often address their acute actions, and different tests and models provide inconsistent results. The goal of this study was to examine whether the treatment with psilocybin and/or LSD would demonstrate immediate and/or sustained antidepressant-like effects in the differential reinforcement of low-rate responding (DRL) schedule in rats. In contrast to the antidepressant screening tools, the DRL 72s test is known to detect antidepressants with high predictive validity as it differentiates clinically effective antidepressants from other psychoactive drugs in non-stressed animals. METHODS: Adult male Sprague Dawley rats were injected over three consecutive days with psilocybin (1 mg/kg), LSD (0.08 mg/kg), or saline and then tested in DRL 72s for the following 4 weeks. RESULTS: Treatment with psilocybin but not LSD demonstrated an immediate antidepressant-like effect, manifested as an increased number of reinforced presses and response efficiency. By contrast, neither of the drugs showed a long-term (up to 4 weeks following administration) antidepressant-like effect. CONCLUSIONS: Using DRL 72s schedule of reinforcement, we demonstrated the acute antidepressant-like effect of psilocybin but not of LSD, and failed to detect their persistent antidepressant-like efficacy. The present study suggests that the detection of long-lasting antidepressant-like activity in rats could be challenging and may require entirely novel behavioral methods.


Assuntos
Alucinógenos , Psilocibina , Ratos , Masculino , Animais , Psilocibina/farmacologia , Ratos Sprague-Dawley , Alucinógenos/farmacologia , Antidepressivos/farmacologia , Reforço Psicológico , Esquema de Reforço , Dietilamida do Ácido Lisérgico/farmacologia
2.
Pharmacol Rep ; 75(5): 1291-1298, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572216

RESUMO

BACKGROUND: Although the terms "agonist" and "antagonist" have been used to classify sigma-1 receptor (σ1R) ligands, an unambiguous definition of the functional activity is often hard. In order to determine the pharmacological profile of σ1R ligands, the most common method is to assess their potency to alleviate opioid analgesia. It has been well established that σ1R agonists reduce opioid analgesic activity, while σ1R antagonists have been demonstrated to enhance opioid analgesia in different pain models. METHODS: In the present study, we evaluated the pharmacological profile of selected σ1R ligands using a novel object recognition (NOR) test, to see if any differences in cognitive functions between σ1R agonists and antagonists could be observed. We used the highly selective PRE-084 and S1RA as reference σ1R agonist and antagonist, respectively. Furthermore, compound KSK100 selected from our ligand library was also included in this study. KSK100 was previously characterized as a dual-targeting histamine H3/σ1R antagonist with antinociceptive and antiallodynic activity in vivo. Donepezil (acetylcholinesterase inhibitor and σ1R agonist) was used as a positive control drug. RESULTS: Both tested σ1R agonists (donepezil and PRE-084) improved learning in the NOR test, which was not observed with the σ1R antagonists S1RA and KSK100. CONCLUSIONS: The nonlinear dose-response effect of PRE-084 in this assay does not justify its use for routine assessment of the functional activity of σ1R ligands.


Assuntos
Analgésicos Opioides , Receptores sigma , Analgésicos Opioides/farmacologia , Ligantes , Teste de Campo Aberto , Acetilcolinesterase , Donepezila , Receptor Sigma-1
3.
Eur Neuropsychopharmacol ; 67: 37-52, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36476352

RESUMO

(S)-ketamine-induced rapid-acting antidepressant effects have revolutionized the pharmacotherapy of major depression; however, this medication also produces psychotomimetic effects such as timing distortion. While (R)-ketamine produces fewer dissociative effects, its antidepressant actions are less studied. Depression is associated with time overestimation (i.e., subjectively, time passes slowly). Our recent report suggests that while (S)-ketamine induces an opposite effect, i.e., time underestimation, the (R)-isomer does not affect timing. It has been suggested that opioid receptors are involved in the antidepressant effect of ketamine. In the present study we tested (R)- and (S)-ketamine, and fluoxetine as a positive control in the differential-reinforcement-of-low-rate (DRL) 72-s schedule of reinforcement in male rats following naloxone pretreatment. DRL classic metrics as well as peak deviation analyses served to determine antidepressant-like actions and those associated with timing. We report antidepressant-like effects of (S)-ketamine (30-60 mg/kg) that resemble fluoxetine's (2.5-10 mg/kg), as both compounds increased reinforcement rate and peak location (suggesting increased performance), reduced premature responses (suggesting time underestimation) and decreased Weber's fraction (suggesting increased timing precision). (R)-ketamine (30, but not 60 mg/kg) increased only the reinforcement rate and peak location but did not affect timing. Only fluoxetine decreased burst responses, suggesting decreased impulsivity. Naloxone pretreatment did not block ketamine enantiomers' actions, but unexpectedly, increased fluoxetine' performance. Thus, while all three medications produced antidepressant-like effects in DRL 72-s, fluoxetine- and (S)- but not (R)- ketamine-induced time underestimation (the subject experiences the time as passing quickly). The potentiation of DRL performance of fluoxetine by naloxone was unexpected and warrants clinical studies.


Assuntos
Transtorno Depressivo , Ketamina , Ratos , Masculino , Animais , Fluoxetina/farmacologia , Ketamina/farmacologia , Reforço Psicológico , Antidepressivos/farmacologia , Esquema de Reforço
4.
Front Pharmacol ; 14: 1329424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38269275

RESUMO

Traditional methods of rat social behavior assessment are extremely time-consuming and susceptible to the subjective biases. In contrast, novel digital techniques allow for rapid and objective measurements. This study sought to assess the feasibility of implementing a digital workflow to compare the effects of (R,S)-ketamine and a veterinary ketamine preparation Vetoquinol (both at 20 mg/kg) on the social behaviors of rat pairs. Historical and novel videos were used to train the DeepLabCut neural network. The numerical data generated by DeepLabCut from 14 video samples, representing various body parts in time and space were subjected to the Simple Behavioral Analysis (SimBA) toolkit, to build classifiers for 12 distinct social and non-social behaviors. To validate the workflow, previously annotated by the trained observer historical videos were analyzed with SimBA classifiers, and regression analysis of the total time of social interactions yielded R 2 = 0.75, slope 1.04; p < 0.001 (N = 101). Remarkable similarities between human and computer annotations allowed for using the digital workflow to analyze 24 novel videos of rats treated with vehicle and ketamine preparations. Digital workflow revealed similarities in the reduction of social behavior by both compounds, and no substantial differences between them. However, the digital workflow also demonstrated ketamine-induced increases in self-grooming, increased transitions from social contacts to self-grooming, and no effects on adjacent lying time. This study confirms and extends the utility of deep learning in analyzing rat social behavior and highlights its efficiency and objectivity. It provides a faster and objective alternative to human workflow.

5.
EMBO Rep ; 23(10): e54420, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35969184

RESUMO

Bipolar disorder (BD) is a chronic mood disorder characterized by manic and depressive episodes. Dysregulation of neuroplasticity and calcium homeostasis are frequently observed in BD patients, but the underlying molecular mechanisms are largely unknown. Here, we show that miR-499-5p regulates dendritogenesis and cognitive function by downregulating the BD risk gene CACNB2. miR-499-5p expression is increased in peripheral blood of BD patients, as well as in the hippocampus of rats which underwent juvenile social isolation. In rat hippocampal neurons, miR-499-5p impairs dendritogenesis and reduces surface expression and activity of the L-type calcium channel Cav1.2. We further identified CACNB2, which encodes a regulatory ß-subunit of Cav1.2, as a direct functional target of miR-499-5p in neurons. miR-499-5p overexpression in the hippocampus in vivo induces short-term memory impairments selectively in rats haploinsufficient for the Cav1.2 pore forming subunit Cacna1c. In humans, miR-499-5p expression is negatively associated with gray matter volumes of the left superior temporal gyrus, a region implicated in auditory and emotional processing. We propose that stress-induced miR-499-5p overexpression contributes to dendritic impairments, deregulated calcium homeostasis, and neurocognitive dysfunction in BD.


Assuntos
Transtorno Bipolar , Canais de Cálcio Tipo L , MicroRNAs , Animais , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Hipocampo/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Plasticidade Neuronal/genética , Ratos
6.
Eur J Med Chem ; 236: 114329, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35397400

RESUMO

The incorporation of the fluorine motif is a strategy widely applied in drug design for modulating the activity, physicochemical parameters, and metabolic stability of chemical compounds. In this study, we attempted to reduce the affinity for ether-à-go-go-related gene (hERG) channel by introducing fluorine atoms in a group of 1H-pyrrolo[3,2-c]quinolines that are capable of inhibiting monoamine oxidase type B (MAO-B). A series of structural modifications guided by in vitro evaluation of MAO-B inhibition and antitargeting for hERG channels were performed, which led to the identification of 1-(3-chlorobenzyl)-4-(4,4-difluoropiperidin-1-yl)-1H-pyrrolo[3,2-c]quinoline (26). Compound 26 acted as a reversible MAO-B inhibitor exhibiting selectivity over 45 targets, enzymes, transporters, and ion channels, and showed potent glioprotective properties in cultured astrocytes. In addition, the compound demonstrated good metabolic stability in rat liver microsomes assay, a favorable safety profile, and brain permeability. It also displayed procognitive effects in the novel object recognition test in rats and antidepressant-like activity in forced swim test in mice. The findings of the study suggest that reversible MAO-B inhibitors can have potential therapeutic applications in Alzheimer's disease.


Assuntos
Inibidores da Monoaminoxidase , Quinolinas , Animais , Encéfalo/metabolismo , Flúor/farmacologia , Camundongos , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/química , Quinolinas/metabolismo , Ratos
7.
Psychopharmacology (Berl) ; 239(6): 1689-1703, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35234983

RESUMO

RATIONALE: Ketamine and psilocybin belong to the rapid-acting antidepressants but they also produce psychotomimetic effects including timing distortion. It is currently debatable whether these are essential for their therapeutic actions. As depressed patients report that the "time is dragging," we hypothesized that ketamine and psilocybin-like compounds may produce an opposite effect, i.e., time underestimation, purportedly contributing to their therapeutic properties. OBJECTIVES: Timing was tested following administration of (R)- and (S)-ketamine, and psilocybin, psilocin, and norpsilocin in the discrete-trial temporal discrimination task (TDT) in male rats. Timing related to premature responses, and cognitive and unspecific effects of compounds were tested in the 5-choice serial reaction time task (5-CSRTT) in the standard 1-s, and "easier" 2-s stimulus duration conditions, as well as in the vITI variant promoting impulsive responses. RESULTS: (S)-ketamine (15 but not 3.75 or 7.5 mg/kg) shifted psychometric curve to the right in TDT and reduced premature responses in 5-CSRTT, suggesting expected time underestimation, but it also decreased the accuracy of temporal discrimination and increased response and reward latencies, decreased correct responses, and increased incorrect responses. While (R)-ketamine did not affect timing and produced no unspecific actions, it reduced incorrect responses in TDT and increased accuracy in 5-CSRTT, suggesting pro-cognitive effects. Psilocin and psilocybin produced mainly unspecific effects in both tasks, while norpsilocin showed no effects. CONCLUSIONS: Time underestimation produced by (S)-ketamine could be associated with its antidepressant effects; however, it was accompanied with severe behavioral disruption. We also hypothesize that behavioral disruption produced by psychedelics objectively reflects their psychotomimetic-like actions.


Assuntos
Ketamina , Psilocibina , Animais , Antidepressivos/farmacologia , Cognição , Humanos , Ketamina/farmacologia , Masculino , Psilocibina/análogos & derivados , Psilocibina/farmacologia , Psilocibina/uso terapêutico , Ratos , Serotonina/análogos & derivados
8.
J Med Chem ; 64(18): 13279-13298, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34467765

RESUMO

In line with recent clinical trials demonstrating that ondansetron, a 5-HT3 receptor (5-HT3R) antagonist, ameliorates cognitive deficits of schizophrenia and the known procognitive effects of 5-HT6 receptor (5-HT6R) antagonists, we applied the hybridization strategy to design dual-acting 5-HT3/5-HT6R antagonists. We identified the first-in-class compound FPPQ, which behaves as a 5-HT3R antagonist and a neutral antagonist 5-HT6R of the Gs pathway. FPPQ shows selectivity over 87 targets and decent brain penetration. Likewise, FPPQ inhibits phencyclidine (PCP)-induced hyperactivity and displays procognitive properties in the novel object recognition task. In contrast to FPPQ, neither 5-HT6R inverse agonist SB399885 nor neutral 5-HT6R antagonist CPPQ reversed (PCP)-induced hyperactivity. Thus, combination of 5-HT3R antagonism and 5-HT6R antagonism, exemplified by FPPQ, contributes to alleviating the positive-like symptoms. Present findings reveal critical structural features useful in a rational polypharmacological approach to target 5-HT3/5-HT6 receptors and encourage further studies on dual-acting 5-HT3/5-HT6R antagonists for the treatment of psychiatric disorders.


Assuntos
Antipsicóticos/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Nootrópicos/uso terapêutico , Receptores 5-HT3 de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Antagonistas do Receptor 5-HT3 de Serotonina/uso terapêutico , Animais , Antipsicóticos/síntese química , Antipsicóticos/metabolismo , Antipsicóticos/farmacocinética , Combinação de Medicamentos , Cobaias , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Nootrópicos/síntese química , Nootrópicos/metabolismo , Nootrópicos/farmacocinética , Ondansetron/uso terapêutico , Piperazinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Antagonistas do Receptor 5-HT3 de Serotonina/síntese química , Antagonistas do Receptor 5-HT3 de Serotonina/metabolismo , Antagonistas do Receptor 5-HT3 de Serotonina/farmacocinética , Relação Estrutura-Atividade , Sulfonamidas/uso terapêutico
9.
Pharmaceuticals (Basel) ; 14(8)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34451841

RESUMO

The increasing number of patients reporting depressive symptoms requires the design of new antidepressants with higher efficacy and limited side effects. As our previous research showed, 2-methoxyphenylpiperazine derivatives are promising candidates to fulfill these criteria. In this study, we aimed to synthesize a novel 2-methoxyphenylpiperazine derivative, HBK-10, and investigate its in vitro and in vivo pharmacological profile. After assessing the affinity for serotonergic and dopaminergic receptors, and serotonin transporter, we determined intrinsic activity of the compound at the 5-HT1A and D2 receptors. Next, we performed behavioral experiments (forced swim test, tail suspension test) to evaluate the antidepressant-like activity of HBK-10 in naïve and corticosterone-treated mice. We also assessed the safety profile of the compound. We showed that HBK-10 bound strongly to 5-HT1A and D2 receptors and presented antagonistic properties at these receptors in the functional assays. HBK-10 displayed the antidepressant-like effect not only in naïve animals, but also in the corticosterone-induced mouse depression model, i.e., chronic administration of HBK-10 reversed corticosterone-induced changes in behavior. Moreover, the compound's sedative effect was observed at around 26-fold higher doses than the antidepressant-like ones. Our study showed that HBK-10 displayed a favorable pharmacological profile and may represent an attractive putative treatment candidate for depression.

10.
Front Pharmacol ; 12: 691598, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276379

RESUMO

Posttraumatic stress disorder (PTSD) has been associated with abnormal regulation of the hypothalamic-pituitary-adrenal gland axis (HPA). Women demonstrate a more robust HPA response and are twice as likely to develop PTSD than men. The role of sex hormones in PTSD remains unclear. We investigated whether post-trauma chronic treatment with the GABA-ergic agent tiagabine and dopamine-mimetic pramipexole affected the behavioral outcome and plasma levels of corticosterone, testosterone, or 17ß-estradiol in female and male mice. These medications were investigated due to their potential capacity to restore GABA-ergic and dopaminergic deficits in PTSD. Animals were exposed to a single prolonged stress procedure (mSPS). Following 13 days treatment with tiagabine (10 mg/kg) or pramipexole (1 mg/kg) once daily, the PTSD-like phenotype was examined in the fear conditioning paradigm. Plasma hormones were measured almost immediately following the conditioned fear assessment. We report that the exposure to mSPS equally enhanced conditioned fear in both sexes. However, while males demonstrated decreased plasma corticosterone, its increase was observed in females. Trauma elevated plasma testosterone in both sexes, but it had no significant effects on 17ß-estradiol. Behavioral manifestation of trauma was reduced by pramipexole in both sexes and by tiagabine in females only. While neither compound affected corticosterone in stressed animals, testosterone levels were further enhanced by tiagabine in females. This study shows sex-dependent efficacy of tiagabine but not pramipexole in a mouse model of PTSD-like symptoms and a failure of steroid hormones' levels to predict PTSD treatment efficacy.

11.
Eur J Med Chem ; 208: 112766, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32919297

RESUMO

A series of tryptophan-based selective nanomolar butyrylcholinesterase (BChE) inhibitors was designed and synthesized. Compounds were optimized in terms of potency, selectivity, and synthetic accessibility. The crystal structure of the inhibitor 18 in complex with BChE revealed the molecular basis for its low nanomolar inhibition (IC50 = 2.8 nM). The favourable in vitro results enabled a first-in-animal in vivo efficacy and safety trial, which demonstrated a positive impact on fear-motivated and spatial long-term memory retrieval without any concomitant adverse motor effects. Altogether, this research culminated in a handful of new lead compounds with promising potential for symptomatic treatment of patients with Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/uso terapêutico , Nootrópicos/uso terapêutico , Triptofano/análogos & derivados , Triptofano/uso terapêutico , Animais , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/toxicidade , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Estrutura Molecular , Nootrópicos/síntese química , Nootrópicos/toxicidade , Relação Estrutura-Atividade , Triptofano/toxicidade
12.
Behav Brain Res ; 381: 112380, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31765726

RESUMO

Buspirone presents a unique profile of action, which involves activation of 5-HT1A receptors and complex effects on D2-like dopaminergic receptors. This medication is studied in terms of potential clinical repositioning to conditions that are associated with dopaminergic dysfunctions including schizophrenia and substance use disorder. Buspirone antagonizes D3 and D4 receptors, however, depending on the dose it differentially interacts with D2 receptors. Previously, we reported that some of D2/D3 dopaminergic agonists attenuate PTSD-like behavioral symptoms in mice. Here we investigated whether buspirone could also affect PTSD-like symptoms. We used the single prolonged stress (mSPS) protocol to induce PTSD-like behavior in adult male CD-1 mice. Buspirone (0.5, 2, or 10 mg/kg, i.p.) was injected for 15 consecutive days. The subjects were repeatedly examined in a variety of behavioral tests measuring conditioned freezing response, antidepressant-like effects, anxiety, and ultrasonic vocal response to the restraint stress. Mouse SPS resulted in prolonged immobility in the forced swim test and freezing in the fear-conditioning test, and produced symptoms of anxiety. Buspirone dose-dependently decreased the exaggerated freezing response in mice, but only at the dose of 2 mg/kg exhibited the anxiolytic-like effect in the elevated plus maze test. Buspirone reduced the number of ultrasonic calls in mSPS-exposed mice but revealed no antidepressant-like effect in the forced swim test. Present data suggest some positive effects of buspirone in the treatment of selected PTSD-like symptoms and prompt for its further clinical evaluation.


Assuntos
Comportamento Animal/efeitos dos fármacos , Buspirona/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Animais , Condicionamento Psicológico/efeitos dos fármacos , Modelos Animais de Doenças , Medo/efeitos dos fármacos , Reação de Congelamento Cataléptica/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Camundongos , Receptores de Dopamina D2/efeitos dos fármacos , Restrição Física , Vocalização Animal/efeitos dos fármacos
13.
Bioorg Chem ; 90: 103084, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31271942

RESUMO

In the search for new treatments for complex disorders such as Alzheimer's disease the Multi-Target-Directed Ligands represent a very promising approach. The aim of the present study was to identify multifunctional compounds among several series of non-imidazole histamine H3 receptor ligands, derivatives of 1-[2-thiazol-5-yl-(2-aminoethyl)]-4-n-propylpiperazine, 1-[2-thiazol-4-yl-(2-aminoethyl)]-4-n-propylpiperazine and 1-phenoxyalkyl-4-(amino)alkylopiperazine using in vitro and in vivo pharmacological evaluation and computational studies. Performed in vitro assays showed moderate potency of tested compounds against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Molecular modeling studies have revealed possible interactions between the active compounds and both AChE and BuChE as well as the human H3 histamine receptor. Computational studies showed the high drug-likeness of selected compounds with very good physicochemical profiles. The parallel artificial membrane permeation assay proved outstanding blood-brain barrier penetration in test conditions. The most promising compound, A12, chemically methyl(4-phenylbutyl){2-[2-(4-propylpiperazin-1-yl)-1,3-thiazol-5-yl]ethyl}amine, possesses good balanced multifunctional profile with potency toward studied targets - H3 antagonist activity (pA2 = 8.27), inhibitory activity against both AChE (IC50 = 13.96 µM), and BuChE (IC50 = 14.62 µM). The in vivo pharmacological studies revealed the anti-amnestic properties of compound A12 in the passive avoidance test on mice.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Amnésia/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Modelos Animais de Doenças , Piperazinas/química , Receptores Histamínicos H3/metabolismo , Acetilcolinesterase/química , Adjuvantes Anestésicos/toxicidade , Amnésia/induzido quimicamente , Animais , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Biologia Computacional , Técnicas In Vitro , Ligantes , Masculino , Camundongos , Modelos Moleculares , Estrutura Molecular , Receptores Histamínicos H3/química , Escopolamina/toxicidade , Relação Estrutura-Atividade
14.
Neuropharmacology ; 155: 1-9, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31085186

RESUMO

Medications that enhance dopaminergic neurotransmission can be useful in the pharmacotherapy of posttraumatic stress disorder (PTSD), which manifests as fearful memory retrieval, anxiety and depression. We examined the effects of subchronic (15 days) treatment with select dopaminergic medications, including bromocriptine, modafinil, dihydrexidine, rotigotine and pramipexole, in a mouse model of PTSD induced by single prolonged stress (mSPS). The potential antidepressant-like and anxiolytic effects of the medications were measured by the forced swim test (FST) and the elevated plus maze (EPM) test, respectively. In addition, we studied the effects of these medications on memory retrieval in an auditory fear conditioning (FC) test, on ultrasonic vocalizations (USVs) induced by restraint stress, and on spontaneous locomotor activity (SLA). We report that a single exposure to a severe and complex set of stressors several days before testing increased immobility time in the FST and freezing in the FC paradigm and reduced the time spent in the open arms of the EPM. The stressed mice also displayed increased USVs, especially the short type. While none of the tested dopamine-mimetics exhibited anxiolytic-like effects, rotigotine produced antidepressant-like activity specifically in the mSPS-exposed animals. Moreover, both rotigotine and pramipexole shortened the duration of freezing in the fear conditioning test, but only in the mSPS-exposed mice. This study supports the hypothesis that the activation of dopaminergic D2/D3 receptors may be a promising pharmacotherapy for PTSD.


Assuntos
Agonistas de Dopamina/uso terapêutico , Receptores de Dopamina D2 , Receptores de Dopamina D3/agonistas , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/psicologia , Animais , Agonistas de Dopamina/farmacologia , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Ratos , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia , Vocalização Animal/efeitos dos fármacos , Vocalização Animal/fisiologia
15.
Chem Biol Drug Des ; 93(6): 1061-1072, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30900821

RESUMO

Oxaliplatin is a third-generation, platinum-based derivative used to treat advanced colorectal cancer. Within the patient population on oxaliplatin therapy, a lower incidence of hematological adverse effects and gastrointestinal toxicity is noted, but severe neuropathic pain episodes characterized by increased cold and tactile hypersensitivity are present in ~95% of patients. This drug is also used to induce a rodent model of chemotherapy-induced peripheral neuropathy (CIPN)-related neuropathic pain which is widely used in the search for novel therapies for CIPN prevention and treatment. This paper provides a step-by-step, detailed description of the prevention and intervention protocols used in our laboratory for the assessment of oxaliplatin-induced cold allodynia in mice. To establish cold sensitivity in mice, the cold plate test was used. Latencies to pain reaction in response to cold stimulus (2.5°C) for vehicle-treated non-neuropathic mice, vehicle-treated mice injected with oxaliplatin (neuropathic control), and oxaliplatin-treated mice treated additionally with duloxetine are compared. Duloxetine is a serotonin/noradrenaline reuptake inhibitor which was found to produce significant pain relief in patients with CIPN symptoms. In our present study, duloxetine administered intraperitoneally at the dose of 30 mg/kg served as a model antiallodynic drug which attenuated or partially prevented cold allodynia caused by oxaliplatin.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Analgésicos/farmacologia , Antineoplásicos/efeitos adversos , Temperatura Baixa , Oxaliplatina/efeitos adversos , Animais , Masculino , Camundongos
16.
Pharmacol Res ; 142: 30-49, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30742899

RESUMO

Recent progress in the field of neurobiology supported by clinical evidence gradually reveals the mystery of human brain functioning. So far, many psychiatric disorders have been described in great detail, although there are still plenty of cases that are misunderstood. These include posttraumatic stress disorder (PTSD), which is a unique disease that combines a wide range of neurobiological changes, which involve disturbances of the hypothalamic-pituitary-adrenal gland axis, hyperactivation of the amygdala complex, and attenuation of some hippocampal and cortical functions. Such multiplicity results in differential symptomatology, including elevated anxiety, nightmares, fear retrieval episodes that may trigger delusions and hallucinations, sleep disturbances, and many others that strongly interfere with the quality of the patient's life. Because of widespread neurological changes and the disease manifestation, the pharmacotherapy of PTSD remains unclear and requires a multidimensional approach and involvement of polypharmacotherapy. Hopefully, more and more neuroscientists and clinicians will study PTSD, which will provide us with new information that would possibly accelerate establishment of well-tolerated and effective pharmacotherapy. In this review, we have focused on neurobiological changes regarding PTSD, addressing the most disturbed brain structures and neurotransmissions, as well as discussing in detail the recently taken and novel therapeutic paths.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Sistema Hipotálamo-Hipofisário , Neuroesteroides/metabolismo , Sistema Hipófise-Suprarrenal , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/patologia
17.
Neurotox Res ; 34(3): 431-441, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29680979

RESUMO

Nowadays cognitive impairments are a growing unresolved medical issue which may accompany many diseases and therapies, furthermore, numerous researchers investigate various neurobiological aspects of human memory to find possible ways to improve it. Until any other method is discovered, in vivo studies remain the only available tool for memory evaluation. At first, researchers need to choose a model of amnesia which may strongly influence observed results. Thereby a deeper insight into a model itself may increase the quality and reliability of results. The most common method to impair memory in rodents is the pretreatment with drugs that disrupt learning and memory. Taking this into consideration, we compared the activity of agents commonly used for this purpose. We investigated effects of phencyclidine (PCP), a non-competitive NMDA receptor antagonist, and scopolamine (SCOP), an antagonist of muscarinic receptors, on short-term spatial memory and classical fear conditioning in mice. PCP (3 mg/kg) and SCOP (1 mg/kg) were administrated intraperitoneally 30 min before behavioral paradigms. To assess the influence of PCP and SCOP on short-term spatial memory, the Barnes maze test in C57BL/J6 mice was used. Effects on classical conditioning were evaluated using contextual fear conditioning test. Additionally, spontaneous locomotor activity of mice was measured. These two tests were performed in CD-1 mice. Our study reports that both tested agents disturbed short-term spatial memory in the Barnes maze test, however, SCOP revealed a higher activity. Surprisingly, learning in contextual fear conditioning test was impaired only by SCOP. Graphical Abstract ᅟ.


Assuntos
Amnésia/induzido quimicamente , Antagonistas Colinérgicos/toxicidade , Alucinógenos/toxicidade , Aprendizagem em Labirinto/efeitos dos fármacos , Fenciclidina/toxicidade , Escopolamina/toxicidade , Amnésia/fisiopatologia , Análise de Variância , Animais , Condicionamento Psicológico/efeitos dos fármacos , Modelos Animais de Doenças , Medo/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tempo de Reação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...