Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Radiother Oncol ; 195: 110231, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38518958

RESUMO

BACKGROUND: There is lack of evidence on chronic fatigue (CF) following radiotherapy (RT) in survivors of head and neck cancer (HNC). We aimed to compare CF in HNC survivors > 5 years post-RT with a reference population and investigate factors associated with CF and the possible impact of CF on health-related quality of life (HRQoL). MATERIAL AND METHODS: In this cross-sectional study we included HNC survivors treated in 2007-2013. Participants filled in patient-reported outcome measures and attended a one-day examination. CF was measured with the Fatigue Questionnaire and compared with a matched reference population using t-tests and Cohen's effect size. Associations between CF, clinical and RT-related factors were investigated using logistic regression. HRQoL was measured with the EORTC Quality of Life core questionnaire. RESULTS: The median age of the 227 HNC survivors was 65 years and median time to follow-up was 8.5 years post-RT. CF was twice more prevalent in HNC survivors compared to a reference population. In multivariable analyses, female sex (OR 3.39, 95 % CI 1.82-6.31), comorbidity (OR 2.17, 95 % CI 1.20-3.94) and treatment with intensity-modulated RT (OR 2.13, 95 % CI 1.16-3.91) were associated with CF, while RT dose parameters were not. Survivors with CF compared to those without, had significantly worse HRQoL. CONCLUSIONS: CF in HNC survivors is particularly important for female patients, while specific factors associated with RT appear not to play a role. The high CF prevalence in long-term HNC survivors associated with impaired HRQoL is important information beneficial for clinicians and patients to improve patient follow-up.

2.
Int J Radiat Biol ; 100(5): 767-776, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38442208

RESUMO

PURPOSE: Toxicities from head and neck (H&N) radiotherapy (RT) may affect patient quality of life and can be dose-limiting. Proteins from the transforming growth factor beta (TGF-ß) family are key players in the fibrotic response. While TGF-ß1 is known to be pro-fibrotic, TGF-ß3 has mainly been considered anti-fibrotic. Moreover, TGF-ß3 has been shown to act protective against acute toxicities after radio- and chemotherapy. In the present study, we investigated the effect of TGF-ß3 treatment during fractionated H&N RT in a mouse model. MATERIALS AND METHODS: 30 C57BL/6J mice were assigned to three treatment groups. The RT + TGF-ß3 group received local fractionated H&N RT with 66 Gy over five days, combined with TGF-ß3-injections at 24-hour intervals. Animals in the RT reference group received identical RT without TGF-ß3 treatment. The non-irradiated control group was sham-irradiated according to the same RT schedule. In the follow-up period, body weight and symptoms of oral mucositis and lip dermatitis were monitored. Saliva was sampled at five time points. The experiment was terminated 105 d after the first RT fraction. Submandibular and sublingual glands were preserved, sectioned, and stained with Masson's trichrome to visualize collagen. RESULTS: A subset of mice in the RT + TGF-ß3 group displayed increased severity of oral mucositis and increased weight loss, resulting in a significant increase in mortality. Collagen content was significantly increased in the submandibular and sublingual glands for the surviving RT + TGF-ß3 mice, compared with non-irradiated controls. In the RT reference group, collagen content was significantly increased in the submandibular gland only. Both RT groups displayed lower saliva production after treatment compared to controls. TGF-ß3 treatment did not impact saliva production. CONCLUSIONS: When repeatedly administered during fractionated RT at the current dose, TGF-ß3 treatment increased acute H&N radiation toxicities and increased mortality. Furthermore, TGF-ß3 treatment may increase the severity of radiation-induced salivary gland fibrosis.


Assuntos
Fibrose , Camundongos Endogâmicos C57BL , Glândulas Salivares , Estomatite , Fator de Crescimento Transformador beta3 , Animais , Fator de Crescimento Transformador beta3/metabolismo , Camundongos , Estomatite/etiologia , Estomatite/patologia , Glândulas Salivares/efeitos da radiação , Glândulas Salivares/patologia , Modelos Animais de Doenças , Masculino , Lesões por Radiação/patologia , Lesões por Radiação/etiologia , Feminino , Lesões Experimentais por Radiação/patologia
3.
Radiother Oncol ; 190: 110044, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061420

RESUMO

BACKGROUND: Although dysphagia is a common side effect after radiotherapy (RT) of head and neck cancer (HNC), data on long-term dysphagia is scarce. We aimed to 1) compare radiation dose parameters in HNC survivors with and without dysphagia, 2) investigate factors associated with long-term dysphagia and its possible impact on health-related quality of life (HRQoL), and 3) investigate how our data agree with existing NTCP models. METHODS: This cross-sectional study conducted in 2018-2020, included HNC survivors treated in 2007-2013. Participants attended a one-day examination in hospital and filled in patient questionnaires. Dysphagia was measured with the EORTC QLQ-H&N35 swallowing scale. Toxicity was scored with CTCAE v.4. We contoured swallowing organs at risk (SWOAR) on RT plans, calculated dose-volume histograms (DVHs), performed logistic regression analyses and tested our data in established NTCP models. RESULTS: Of the 239 participants, 75 (31%) reported dysphagia. Compared to survivors without dysphagia, this group had reduced HRQoL and the DVHs for infrahyoid SWOAR were significantly shifted to the right. Long-term dysphagia was associated with age (OR 1.07, 95% CI 1.03-1.10), female sex (OR 2.75, 95% CI 1.45-5.21), and mean dose to middle pharyngeal constrictor muscle (MD-MPCM) (OR 1.06, 95% CI 1.03-1.09). NTCP models overall underestimated the risk of long-term dysphagia. CONCLUSIONS: Long-term dysphagia was associated with higher age, being female, and high MD-MPCM. Doses to distally located SWOAR seemed to be risk factors. Existing NTCP models do not sufficiently predict long-term dysphagia. Further efforts are needed to reduce the prevalence and consequences of this late effect.


Assuntos
Transtornos de Deglutição , Neoplasias de Cabeça e Pescoço , Humanos , Feminino , Masculino , Transtornos de Deglutição/epidemiologia , Transtornos de Deglutição/etiologia , Qualidade de Vida , Estudos Transversais , Neoplasias de Cabeça e Pescoço/radioterapia , Deglutição/efeitos da radiação
4.
Strahlenther Onkol ; 200(1): 19-27, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37429949

RESUMO

PURPOSE: To analyze tumor characteristics derived from pelvic magnetic resonance imaging (MRI) of patients with squamous cell carcinoma of the anus (SCCA) before and during chemoradiotherapy (CRT), and to compare the changes in these characteristics between scans of responders vs. nonresponders to CRT. METHODS: We included 52 patients with a pelvic 3T MRI scan prior to CRT (baseline scan); 39 of these patients received an additional scan during week 2 of CRT (second scan). Volume, diameter, extramural tumor depth (EMTD), and external anal sphincter infiltration (EASI) of the tumor were assessed. Mean, kurtosis, skewness, standard deviation (SD), and entropy values were extracted from apparent diffusion coefficient (ADC) histograms. The main outcome was locoregional treatment failure. Correlations were evaluated with Wilcoxon's signed rank-sum test and Pearson's correlation coefficient, quantile regression, univariate logistic regression, and area under the ROC curve (AUC) analyses. RESULTS: In isolated analyses of the baseline and second MRI scans, none of the characteristics were associated with outcome. Comparison between the scans showed significant changes in several characteristics: volume, diameter, EMTD, and ADC skewness decreased in the second scan, although the mean ADC increased. Small decreases in volume and diameter were associated with treatment failure, and these variables had the highest AUC values (0.73 and 0.76, respectively) among the analyzed characteristics. CONCLUSION: Changes in tumor volume and diameter in an early scan during CRT could represent easily assessable imaging-based biomarkers to eliminate the need for analysis of more complex MRI characteristics.


Assuntos
Neoplasias do Ânus , Neoplasias Retais , Humanos , Neoplasias Retais/patologia , Imageamento por Ressonância Magnética/métodos , Resultado do Tratamento , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias do Ânus/diagnóstico por imagem , Neoplasias do Ânus/terapia , Quimiorradioterapia/métodos , Estudos Retrospectivos
5.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069306

RESUMO

Extracellular vesicles (EVs) are membrane-bound particles released from cells, and their cargo can alter the function of recipient cells. EVs from X-irradiated cells have been shown to play a likely role in non-targeted effects. However, EVs derived from proton irradiated cells have not yet been studied. We aimed to investigate the proteome of EVs and their cell of origin after proton or X-irradiation. The EVs were derived from a human oral squamous cell carcinoma (OSCC) cell line exposed to 0, 4, or 8 Gy from either protons or X-rays. The EVs and irradiated OSCC cells underwent liquid chromatography-mass spectrometry for protein identification. Interestingly, we found different protein profiles both in the EVs and in the OSCC cells after proton irradiation compared to X-irradiation. In the EVs, we found that protons cause a downregulation of proteins involved in cell growth and DNA damage response compared to X-rays. In the OSCC cells, proton and X-irradiation induced dissimilar cell death pathways and distinct DNA damage repair systems. These results are of potential importance for understanding how non-targeted effects in normal tissue can be limited and for future implementation of proton therapy in the clinic.


Assuntos
Carcinoma de Células Escamosas , Vesículas Extracelulares , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Neoplasias Bucais/radioterapia , Neoplasias Bucais/patologia , Prótons , Raios X , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Proteínas/análise , Neoplasias de Cabeça e Pescoço/patologia , Vesículas Extracelulares/patologia
6.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894899

RESUMO

Cytokines are mediators of inflammation that could lead to fibrosis. The aim was to monitor cytokine levels in saliva and serum after locally fractionated radiotherapy of the head and neck in mice and investigate associations with salivary gland fibrosis and hyposalivation. C57BL/6 mice were randomized to sham or X-ray irradiation of 66 Gy in 10 fractions over 5 days. Blood and saliva were collected on days -7, 5, 35, 80, and 105 following cytokine analysis. The harvested submandibular salivary gland was assessed for the presence of fibrosis. Decision tree regression analysis was used to investigate whether cytokine levels could predict late endpoints in terms of hyposalivation or fibrosis. Significant formation of fibrosis in gland tissue and reduced saliva production was found after irradiation. The pro-inflammatory cytokines IL-1α, TNF, TIMP1, G-CSF, KC, and MIP-1α showed increased levels in saliva in irradiated mice and a strong correlation with late endpoints. The decision tree analysis largely separated controls from irradiated animals, with IL-1α being the strongest predictor. Pro-inflammatory cytokines in saliva, but not in serum, were associated with late endpoints. This indicates that cytokine expression in saliva is a good biomarker for local salivary gland damage with IL-1α as the strongest single predictor.


Assuntos
Saliva , Xerostomia , Camundongos , Animais , Saliva/metabolismo , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Glândulas Salivares/metabolismo , Xerostomia/metabolismo , Fracionamento da Dose de Radiação
7.
Phys Med ; 114: 103151, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37813051

RESUMO

PURPOSE: To evaluate the variability of the 18F-FDG-PET/CT-based metabolic tumor volume (MTV) in anal cancers during fractionated chemoradiotherapy (CRT), and assess the impact of this variability on dosimetric accuracy in MTV-targeted dose painting. METHODS: Eleven patients with anal squamous cell carcinoma who received fractionated chemoradiotherapy with curative intent were included. 18F-FDG PET/CT images were acquired at pre- and mid-treatment. Target volumes and organs at risk (OARs) were contoured manually on both image series. The MTV was generated from the PET images by thresholding. Treatment plans were retrospectively optimized for both image series using volumetric modulated arc therapy (VMAT). Standard plans prescribed 48.6 Gy, 54 Gy and 57.5 Gy in 27 fractions to elective regions, lymph node metastases and primary tumor, respectively. Dose painting plans included an extra dose level of 65 Gy to the MTV. Pre-treatment plans were transferred and re-calculated at mid-treatment basis. RESULTS: MTV decreased from pre- to mid-treatment in 10 of the 11 patients. On average, 71 % of MTVmid overlapped with MTVpre. The median and mean doses to the MTV were robust against anatomical changes, but the transferred dose painting plans had lower D98% values than the original and re-optimized plans. No major differences were found between standard and dose painting plans for OARs. CONCLUSIONS: Despite volumetric changes in the MTV, adequate dose coverage was observed in most dose painting plans. The findings indicate little or no need for adaptive dose painting at mid-treatment. Dose painting appears to be a safe treatment alternative with similar dose sparing of OARs.


Assuntos
Neoplasias do Ânus , Radioterapia de Intensidade Modulada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fluordesoxiglucose F18 , Carga Tumoral , Estudos Retrospectivos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco , Neoplasias do Ânus/diagnóstico por imagem , Neoplasias do Ânus/radioterapia
8.
Front Med (Lausanne) ; 10: 1217037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711738

RESUMO

Background: Radiomics can provide in-depth characterization of cancers for treatment outcome prediction. Conventional radiomics rely on extraction of image features within a pre-defined image region of interest (ROI) which are typically fed to a classification algorithm for prediction of a clinical endpoint. Deep learning radiomics allows for a simpler workflow where images can be used directly as input to a convolutional neural network (CNN) with or without a pre-defined ROI. Purpose: The purpose of this study was to evaluate (i) conventional radiomics and (ii) deep learning radiomics for predicting overall survival (OS) and disease-free survival (DFS) for patients with head and neck squamous cell carcinoma (HNSCC) using pre-treatment 18F-fluorodeoxuglucose positron emission tomography (FDG PET) and computed tomography (CT) images. Materials and methods: FDG PET/CT images and clinical data of patients with HNSCC treated with radio(chemo)therapy at Oslo University Hospital (OUS; n = 139) and Maastricht University Medical Center (MAASTRO; n = 99) were collected retrospectively. OUS data was used for model training and initial evaluation. MAASTRO data was used for external testing to assess cross-institutional generalizability. Models trained on clinical and/or conventional radiomics features, with or without feature selection, were compared to CNNs trained on PET/CT images without or with the gross tumor volume (GTV) included. Model performance was measured using accuracy, area under the receiver operating characteristic curve (AUC), Matthew's correlation coefficient (MCC), and the F1 score calculated for both classes separately. Results: CNNs trained directly on images achieved the highest performance on external data for both endpoints. Adding both clinical and radiomics features to these image-based models increased performance further. Conventional radiomics including clinical data could achieve competitive performance. However, feature selection on clinical and radiomics data lead to overfitting and poor cross-institutional generalizability. CNNs without tumor and node contours achieved close to on-par performance with CNNs including contours. Conclusion: High performance and cross-institutional generalizability can be achieved by combining clinical data, radiomics features and medical images together with deep learning models. However, deep learning models trained on images without contours can achieve competitive performance and could see potential use as an initial screening tool for high-risk patients.

9.
Acta Oncol ; 62(11): 1574-1580, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37703217

RESUMO

BACKGROUND: The purpose of this study was to investigate acute normal tissue responses in the head and neck region following proton- or X-irradiation of a murine model. MATERIALS AND METHODS: Female C57BL/6J mice were irradiated with protons (25 or 60 MeV) or X-rays (100 kV). The radiation field covered the oral cavity and the major salivary glands. For protons, two different treatment plans were used, either with the Bragg Peak in the middle of the mouse (BP) or outside the mouse (transmission mode; TM). Delivered physical doses were 41, 45, and 65 Gy given in 6, 7, and 10 fractions for BP, TM, and X-rays, respectively. Alanine dosimetry was used to assess delivered doses. Oral mucositis and dermatitis were scored using CTC v.2.0-based tables. Saliva was collected at baseline, right after end of irradiation, and at day 35. RESULTS: The measured dose distribution for protons (TM) and X-rays was very similar. Oral mucositis appeared earlier, had a higher score and was found in a higher percentage of mice after proton irradiation compared to X-irradiation. Dermatitis, on the other hand, had a similar appearance after protons and X-rays. Compared to controls, saliva production was lower right after termination of proton- and X-irradiation. The BP group demonstrated saliva recovery compared to the TM and X-ray group at day 35. CONCLUSION: With lower delivered doses, proton irradiation resulted in similar skin reactions and increased oral mucositis compared to X-irradiation. This indicates that the relative biological effectiveness of protons for acute tissue responses in the mouse head and neck is greater than the clinical standard of 1.1. Thus, there is a need for further investigations of the biological effect of protons in normal tissues.


Assuntos
Dermatite , Estomatite , Feminino , Camundongos , Animais , Prótons , Raios X , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
10.
Eur J Nucl Med Mol Imaging ; 50(13): 4010-4023, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37632562

RESUMO

Locally advanced cervical cancer (LACC) and anal and oropharyngeal squamous cell carcinoma (ASCC and OPSCC) are mostly caused by oncogenic human papillomaviruses (HPV). In this paper, we developed machine learning (ML) models based on clinical, biological, and radiomic features extracted from pre-treatment fluorine-18-fluorodeoxyglucose positron emission tomography ([18F]-FDG PET) images to predict the survival of patients with HPV-induced cancers. For this purpose, cohorts from five institutions were used: two cohorts of patients treated for LACC including 104 patients from Gustave Roussy Campus Cancer (Center 1) and 90 patients from Leeds Teaching Hospitals NHS Trust (Center 2), two datasets of patients treated for ASCC composed of 66 patients from Institut du Cancer de Montpellier (Center 3) and 67 patients from Oslo University Hospital (Center 4), and one dataset of 45 OPSCC patients from the University Hospital of Zurich (Center 5). Radiomic features were extracted from baseline [18F]-FDG PET images. The ComBat technique was applied to mitigate intra-scanner variability. A modified consensus nested cross-validation for feature selection and hyperparameter tuning was applied on four ML models to predict progression-free survival (PFS) and overall survival (OS) using harmonized imaging features and/or clinical and biological variables as inputs. Each model was trained and optimized on Center 1 and Center 3 cohorts and tested on Center 2, Center 4, and Center 5 cohorts. The radiomic-based CoxNet model achieved C-index values of 0.75 and 0.78 for PFS and 0.76, 0.74, and 0.75 for OS on the test sets. Radiomic feature-based models had superior performance compared to the bioclinical ones, and combining radiomic and bioclinical variables did not improve the performances. Metabolic tumor volume (MTV)-based models obtained lower C-index values for a majority of the tested configurations but quite equivalent performance in terms of time-dependent AUCs (td-AUC). The results demonstrate the possibility of identifying common PET-based image signatures for predicting the response of patients with induced HPV pathology, validated on multi-center multiconstructor data.


Assuntos
Neoplasias do Ânus , Carcinoma de Células Escamosas , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Fluordesoxiglucose F18 , Papillomavirus Humano , Estudos Retrospectivos , Tomografia por Emissão de Pósitrons/métodos , Carcinoma de Células Escamosas/terapia , Neoplasias do Colo do Útero/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
11.
J Appl Clin Med Phys ; 24(9): e14014, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37161820

RESUMO

INTRODUCTION: Tumor hypoxia is associated with poor treatment outcome. Hypoxic regions are more radioresistant than well-oxygenated regions, as quantified by the oxygen enhancement ratio (OER). In optimization of proton therapy, including OER in addition to the relative biological effectiveness (RBE) could therefore be used to adapt to patient-specific radioresistance governed by intrinsic radiosensitivity and hypoxia. METHODS: A combined RBE and OER weighted dose (ROWD) calculation method was implemented in a FLUKA Monte Carlo (MC) based treatment planning tool. The method is based on the linear quadratic model, with α and ß parameters as a function of the OER, and therefore a function of the linear energy transfer (LET) and partial oxygen pressure (pO2 ). Proton therapy plans for two head and neck cancer (HNC) patients were optimized with pO2 estimated from [18 F]-EF5 positron emission tomography (PET) images. For the ROWD calculations, an RBE of 1.1 (RBE1.1,OER ) and two variable RBE models, Rørvik (ROR) and McNamara (MCN), were used, alongside a reference plan without incorporation of OER (RBE1.1 ). RESULTS: For the HNC patients, treatment plans in line with the prescription dose and with acceptable target ROWD could be generated with the established tool. The physical dose was the main factor modulated in the ROWD. The impact of incorporating OER during optimization of HNC patients was demonstrated by the substantial difference found between ROWD and physical dose in the hypoxic tumor region. The largest physical dose differences between the ROWD optimized plans and the reference plan was 12.2 Gy. CONCLUSION: The FLUKA MC based tool was able to optimize proton treatment plans taking the tumor pO2 distribution from hypoxia PET images into account. Independent of RBE-model, both elevated LET and physical dose were found in the hypoxic regions, which shows the potential to increase the tumor control compared to a conventional optimization approach.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Eficiência Biológica Relativa , Oxigênio , Neoplasias de Cabeça e Pescoço/radioterapia , Tomografia por Emissão de Pósitrons , Hipóxia/etiologia , Planejamento da Radioterapia Assistida por Computador/métodos
12.
Appl Radiat Isot ; 197: 110821, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37146467

RESUMO

This paper reports the luminescence properties of nanocrystalline calcium fluoride doped with dysprosium (CaF2: Dy). The nanophosphor has been synthesized by the chemical co-precipitation technique and the dopant concentration has been optimized at 0.3 mol% using thermoluminescence (TL) intensity emitted post 50Gy gamma dose irradiation of samples doped with different dopant concentrations. X-ray diffraction shows the formation of crystalline particles with an average size of 49.233 nm. Photoluminescence (PL) emission spectrum shows the characteristic peaks at 455 nm, 482 nm, 573 nm corresponding to 4I15/2 to 6H15/2, 4F9/2 to 6H15/2 and 4F9/2 to 6H13/2 Dy3+ transitions respectively. PL excitation spectrum shows a peak at 327 nm which corresponds to the Dy3+ transition of 6H15/2 to 4L19/2. Gamma (of 1.25 MeV) and low energy proton beam (of 30 keV) irradiated nanophosphor shows a variation in TL glow curve structure and peak position with an increase in radiation dose/fluence. However, the nanophosphor shows a wide linear dose response for 60Co gamma radiation in the range 10 Gy - 1.5 kGy and for low energy proton beam in the fluence range of 1012-1014 ions/cm2. Srim 2013 has been used to calculate the ion beam parameters including the range of protons in CaF2: Dy 0.3 mol%. The nanophosphor CaF2: Dy could be further investigated as a potential dosimeter for gamma rays and proton beam by studying its TL properties for different energies of these radiations.

13.
Front Vet Sci ; 10: 1143986, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37026102

RESUMO

Background: Radiotherapy (RT) is increasingly being used on dogs with spontaneous head and neck cancer (HNC), which account for a large percentage of veterinary patients treated with RT. Accurate definition of the gross tumor volume (GTV) is a vital part of RT planning, ensuring adequate dose coverage of the tumor while limiting the radiation dose to surrounding tissues. Currently the GTV is contoured manually in medical images, which is a time-consuming and challenging task. Purpose: The purpose of this study was to evaluate the applicability of deep learning-based automatic segmentation of the GTV in canine patients with HNC. Materials and methods: Contrast-enhanced computed tomography (CT) images and corresponding manual GTV contours of 36 canine HNC patients and 197 human HNC patients were included. A 3D U-Net convolutional neural network (CNN) was trained to automatically segment the GTV in canine patients using two main approaches: (i) training models from scratch based solely on canine CT images, and (ii) using cross-species transfer learning where models were pretrained on CT images of human patients and then fine-tuned on CT images of canine patients. For the canine patients, automatic segmentations were assessed using the Dice similarity coefficient (Dice), the positive predictive value, the true positive rate, and surface distance metrics, calculated from a four-fold cross-validation strategy where each fold was used as a validation set and test set once in independent model runs. Results: CNN models trained from scratch on canine data or by using transfer learning obtained mean test set Dice scores of 0.55 and 0.52, respectively, indicating acceptable auto-segmentations, similar to the mean Dice performances reported for CT-based automatic segmentation in human HNC studies. Automatic segmentation of nasal cavity tumors appeared particularly promising, resulting in mean test set Dice scores of 0.69 for both approaches. Conclusion: In conclusion, deep learning-based automatic segmentation of the GTV using CNN models based on canine data only or a cross-species transfer learning approach shows promise for future application in RT of canine HNC patients.

14.
Phys Med Biol ; 68(2)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36580679

RESUMO

Spatially fractionated radiation therapy (SFRT or GRID) is an approach to deliver high local radiation doses in an 'on-off' pattern. To better appraise the radiobiological effects from GRID, a framework to link local radiation dose to clonogenic survival needs to be developed. A549 lung cancer cells were irradiated in T25 cm2flasks using 220 kV x-rays with an open field or through a tungsten GRID collimator with periodical 5 mm openings and 10 mm blockings. Delivered nominal doses were 2, 5, and 10 Gy. A novel approach for image segmentation was used to locate the centroid of surviving colonies in scanned images of the cell flasks. GafchromicTMfilm dosimetry (GFD) and FLUKA Monte Carlo (MC) simulations were employed to map the dose at each surviving colony centroid. Fitting the linear-quadratic (LQ) function to clonogenic survival data for open field irradiation, the expected survival level at a given dose level was calculated. The expected survival levels were then mapped together with the observed levels in the GRID-irradiated flasks. GFD and FLUKA MC gave similar dose distributions, with a mean peak-to-valley dose ratio of about 5. LQ-parameters for open field irradiation gaveα=0.24±0.02Gy-1andß=0.019±0.002Gy-2. The mean relative percentage deviation between observed and predicted survival in the (peak; valley) dose regions was (4.6; 3.1) %, (26.6; -1.0) %, and (129.8; -2.3) % for 2, 5 and 10 Gy, respectively. In conclusion, a framework for mapping of surviving colonies following GRID irradiation together with predicted survival levels from homogeneous irradiation was presented. For the given cell line, our findings indicate that GRID irradiation causes reduced survival in the peak regions compared to an open field configuration.


Assuntos
Neoplasias Pulmonares , Radiometria , Humanos , Radiometria/métodos , Raios X , Radiobiologia , Doses de Radiação , Método de Monte Carlo
15.
J Radiat Res ; 64(1): 44-52, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36253091

RESUMO

Radiotherapy (RT) of head and neck (H&N) cancer is known to cause both early- and late-occurring toxicities. To better appraise normal tissue responses and their dependence on treatment parameters such as radiation field and type, as well as dose and fractionation scheme, a preclinical model with relevant endpoints is required. 12-week old female C57BL/6 J mice were irradiated with 100 or 180 kV X-rays to total doses ranging from 30 to 85 Gy, given in 10 fractions over 5 days. The radiation field covered the oral cavity, swallowing structures and salivary glands. Monte Carlo simulations were employed to estimate tissue dose distribution. The follow-up period was 35 days, in order to study the early radiation-induced effects. Baseline and post irradiation investigations included macroscopic and microscopic examinations of the skin, lips, salivary glands and oral mucosa. Saliva sampling was performed to assess the salivary gland function following radiation exposure. A dose dependent radiation dermatitis in the skin was observed for doses above 30 Gy. Oral mucositis in the tongue appeared as ulcerations on the ventral surface of the tongue for doses of 75-85 Gy. The irradiated mice showed significantly reduced saliva production compared to controls. In summary, a preclinical model to investigate a broad panel of normal tissue responses following fractionated irradiation of the H&N region was established. The optimal dose to study early radiation-induced effects was found to be around 75 Gy, as this was the highest tolerated dose that gave acute effects similar to that observed in cancer patients.


Assuntos
Neoplasias de Cabeça e Pescoço , Lesões por Radiação , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Glândulas Salivares , Saliva , Neoplasias de Cabeça e Pescoço/radioterapia , Lesões por Radiação/etiologia , Fracionamento da Dose de Radiação , Relação Dose-Resposta à Radiação
16.
Sci Rep ; 12(1): 18919, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344543

RESUMO

The main objective of radiotherapy is to exploit the curative potential of ionizing radiation while inflicting minimal radiation-induced damage to healthy tissue and sensitive organs. Proton beam therapy has been developed to irradiate the tumor with higher precision and dose conformity compared to conventional X-ray irradiation. The dose conformity of this treatment modality may be further improved if narrower proton beams are used. Still, this is limited by multiple Coulomb scattering of protons through tissue. The primary aim of this work was to develop techniques to produce narrow proton beams and investigate the resulting dose profiles. We introduced and assessed three different proton beam shaping techniques: (1) metal collimators (100/150 MeV), (2) focusing of conventional- (100/150 MeV), and (3) focusing of high-energy (350 MeV, shoot-through) proton beams. Focusing was governed by the initial value of the Twiss parameter [Formula: see text] ([Formula: see text]), and can be implemented with magnetic particle accelerator optics. The dose distributions in water were calculated by Monte Carlo simulations using Geant4, and evaluated by target to surface dose ratio (TSDR) in addition to the transverse beam size ([Formula: see text]) at the target. The target was defined as the location of the Bragg peak or the focal point. The different techniques showed greatly differing dose profiles, where focusing gave pronouncedly higher relative target dose and efficient use of primary protons. Metal collimators with radii [Formula: see text] gave low TSDRs ([Formula: see text]) and large [Formula: see text]([Formula: see text]). In contrast, a focused beam of conventional ([Formula: see text]) energy produced a very high TSDR ([Formula: see text]) with similar [Formula: see text] as a collimated beam. High-energy focused beams were able to produce TSDRs [Formula: see text] and [Formula: see text] around 1.5 mm. From this study, it appears very attractive to implement magnetically focused proton beams in radiotherapy of small lesions or tumors in close vicinity to healthy organs at risk. This can also lead to a paradigm change in spatially fractionated radiotherapy. Magnetic focusing would facilitate FLASH irradiation due to low losses of primary protons.


Assuntos
Terapia com Prótons , Radioatividade , Prótons , Método de Monte Carlo , Aceleradores de Partículas , Dosagem Radioterapêutica
17.
Radiother Oncol ; 176: 17-24, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36113778

RESUMO

BACKGROUND AND PURPOSE: MRI, applying dynamic contrast-enhanced (DCE) and diffusion-weighted (DW) sequences, and 18F-fluorodeoxyglucose (18F-FDG) PET/CT provide information about tumor aggressiveness that is unexploited in treatment of locally advanced cervical cancer (LACC). We investigated the potential of a multimodal combination of imaging parameters for classifying patients according to their risk of recurrence. MATERIALS AND METHODS: Eighty-two LACC patients with diagnostic MRI and FDG-PET/CT, treated with chemoradiotherapy, were collected. Thirty-eight patients with MRI only were included for validation of MRI results. Endpoints were survival (disease-free, cancer-specific, overall) and tumor control (local, locoregional, distant). Ktrans, reflecting vascular function, apparent diffusion coefficient (ADC), reflecting cellularity, and standardized uptake value (SUV), reflecting glucose uptake, were extracted from DCE-MR, DW-MR and FDG-PET images, respectively. By applying an oxygen consumption and supply-based method, ADC and Ktrans parametric maps were voxel-wise combined into hypoxia images that were used to determine hypoxic fraction (HF). RESULTS: HF showed a stronger association with outcome than the single modality parameters. This association was confirmed in the validation cohort. Low HF identified low-risk patients with 95% precision. Based on the 50th SUV-percentile (SUV50), patients with high HF were divided into an intermediate- and high-risk group with high and low SUV50, respectively. This defined a multimodality biomarker, HF/SUV50. HF/SUV50 increased the precision of detecting high-risk patients from 41% (HF alone) to 57% and showed prognostic significance in multivariable analysis for all endpoints. CONCLUSION: Multimodal combination of MR- and FDG-PET/CT-images improves classification of LACC patients compared to single modality images and clinical factors.


Assuntos
Fluordesoxiglucose F18 , Neoplasias do Colo do Útero , Feminino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/terapia , Compostos Radiofarmacêuticos , Tomografia Computadorizada por Raios X/métodos , Tomografia por Emissão de Pósitrons/métodos , Quimiorradioterapia , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética
18.
Diagn Progn Res ; 6(1): 14, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35922837

RESUMO

BACKGROUND: Anal cancer is a rare cancer with rising incidence. Despite the relatively good outcomes conferred by state-of-the-art chemoradiotherapy, further improving disease control and reducing toxicity has proven challenging. Developing and validating prognostic models using routinely collected data may provide new insights for treatment development and selection. However, due to the rarity of the cancer, it can be difficult to obtain sufficient data, especially from single centres, to develop and validate robust models. Moreover, multi-centre model development is hampered by ethical barriers and data protection regulations that often limit accessibility to patient data. Distributed (or federated) learning allows models to be developed using data from multiple centres without any individual-level patient data leaving the originating centre, therefore preserving patient data privacy. This work builds on the proof-of-concept three-centre atomCAT1 study and describes the protocol for the multi-centre atomCAT2 study, which aims to develop and validate robust prognostic models for three clinically important outcomes in anal cancer following chemoradiotherapy. METHODS: This is a retrospective multi-centre cohort study, investigating overall survival, locoregional control and freedom from distant metastasis after primary chemoradiotherapy for anal squamous cell carcinoma. Patient data will be extracted and organised at each participating radiotherapy centre (n = 18). Candidate prognostic factors have been identified through literature review and expert opinion. Summary statistics will be calculated and exchanged between centres prior to modelling. The primary analysis will involve developing and validating Cox proportional hazards models across centres for each outcome through distributed learning. Outcomes at specific timepoints of interest and factor effect estimates will be reported, allowing for outcome prediction for future patients. DISCUSSION: The atomCAT2 study will analyse one of the largest available cross-institutional cohorts of patients with anal cancer treated with chemoradiotherapy. The analysis aims to provide information on current international clinical practice outcomes and may aid the personalisation and design of future anal cancer clinical trials through contributing to a better understanding of patient risk stratification.

19.
Int J Mol Sci ; 23(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35897723

RESUMO

Hyper-radiosensitivity (HRS) is the increased sensitivity to low doses of ionizing radiation observed in most cell lines. We previously demonstrated that HRS is permanently abolished in cells irradiated at a low dose rate (LDR), in a mechanism dependent on transforming growth factor ß3 (TGF-ß3). In this study, we aimed to elucidate the activation and receptor binding of TGF-ß3 in this mechanism. T-47D cells were pretreated with inhibitors of potential receptors and activators of TGF-ß3, along with addition of small extracellular vesicles (sEVs) from LDR primed cells, before their radiosensitivity was assessed by the clonogenic assay. The protein content of sEVs from LDR primed cells was analyzed with mass spectrometry. Our results show that sEVs contain TGF-ß3 regardless of priming status, but only sEVs from LDR primed cells remove HRS in reporter cells. Inhibition of the matrix metalloproteinase (MMP) family prevents removal of HRS, suggesting an MMP-dependent activation of TGF-ß3 in the LDR primed cells. We demonstrate a functional interaction between TGF-ß3 and activin receptor like kinase 1 (ALK1) by showing that TGF-ß3 removes HRS through ALK1 binding, independent of ALK5 and TGF-ßRII. These results are an important contribution to a more comprehensive understanding of the mechanism behind TGF-ß3 mediated removal of HRS.


Assuntos
Vesículas Extracelulares , Fator de Crescimento Transformador beta3 , Linhagem Celular , Vesículas Extracelulares/metabolismo , Doses de Radiação , Tolerância a Radiação/fisiologia , Fator de Crescimento Transformador beta/metabolismo
20.
J Neuroendocrinol ; 34(7): e13170, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35729738

RESUMO

A positive fluorine-18 labelled 2-deoxy-2-fluoroglucose ([18 F]FDG) positron emission tomography/computed tomography (PET/CT) has been associated with more aggressive disease and less differentiated neuroendocrine neoplasms (NEN). Although a high maximum standardized uptake value (SUVmax ) predicts poor outcome in NEN, volumetric parameters from [18 F]FDG PET have not been evaluated for prognostication in a pure high-grade gastroenteropancreatic (GEP) NEN cohort. In this retrospective observational study, we evaluated the volumetric PET parameters total metabolic tumour volume (tMTV) and total total lesion glycolysis (tTLG) for independent prognostication of overall survival (OS). High-grade GEP NEN patients with [18 F]FDG PET/CT examination and biopsy within 90 days were included. Total MTV and tTLG were calculated using an adaptive thresholding software. Patients were dichotomised into low and high metabolic groups based on median tMTV and tTLG. OS was compared using Kaplan-Meier estimator and log-rank test. Uni and multivariable Cox regression was used to estimate effect sizes and adjust for tumour differentiation and SUVmax . Sixty-six patients (median age 64 years) were included with 14 NET G3 and 52 NEC cases after histological re-evaluation. Median tMTV was 208 cm3 and median tTLG 1899 g. Median OS in the low versus high tMTV-group was 21.2 versus 5.7 months (HR 2.53, p = 0.0007) and 22.8 versus 5.7 months (HR 2.42, p = 0.0012) in the tTLG-group. Adjusted for tumour differentiation and SUVmax , tMTV and tTLG still predicted for poor OS, and both tMTV and tTLG were stronger prognostic parameters than SUVmax . Both regression models showed a strong association between volumetric parameters and OS for both neuroendocrine tumours (NET) G3 and neuroendocrine carcinomas (NEC). OS for the tTLG low metabolic NEC was much higher than for the tTLG high metabolic NET G3 (18.3 vs. 5.7 months). High-grade GEP NEN patients with high tMTV or tTLG had a worse OS regardless of tumour differentiation (NET G3 or NEC). Volumetric PET parameters were stronger prognostic parameters than SUVmax .


Assuntos
Fluordesoxiglucose F18 , Tumores Neuroendócrinos , Fluordesoxiglucose F18/metabolismo , Humanos , Pessoa de Meia-Idade , Tumores Neuroendócrinos/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Prognóstico , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...