Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37765219

RESUMO

The increased prevalence of pulmonary methicillin-resistant Staphylococcus aureus (MRSA) infection in patients living with cystic fibrosis (CF) is concerning due to a correlation with reduced life expectancy and lack of available treatment options. RV94 is a next generation lipoglycopeptide designed for pulmonary delivery that preclinically demonstrated high potency against MRSA in planktonic and protected colonies and improved pulmonary clearance relative to same class molecules. Here, RV94 was formulated into a dry powder for inhalation (DPI) to investigate the localized treatment of pulmonary MRSA presented in a potentially more convenient dosage form. RV94 DPI was generated using a spray-drying process with 12.5 wt% trileucine and demonstrated aerosol characteristics (2.0 µm MMAD and 73% FPF) predictive of efficient pulmonary deposition. In vivo PK from a single dose of RV94 DPI delivered by inhalation to rats yielded lung levels (127 µg/g) much greater than the MRSA minimum inhibitory concentration (0.063 µg/mL), low systemic levels (0.1 µg/mL), and a lung t1/2 equal to 3.5 days. In a rat acute pulmonary MRSA model, a single dose of RV94 DPI delivered by inhalation either up to seven days prior to or 24 h after infection resulted in a statistically significant reduction in lung MRSA titer.

2.
Pharmaceutics ; 15(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36986795

RESUMO

Treprostinil palmitil (TP), a prodrug of treprostinil, is being developed as an inhalation powder (TPIP) for the treatment of patients with pulmonary arterial hypertension (PAH) and pulmonary hypertension due to interstitial lung disease (PH-ILD). In ongoing human clinical trials, TPIP is administered via a commercially available high resistance (HR) RS01 capsule-based dry powder inhaler (DPI) device manufactured by Berry Global (formerly Plastiape), which utilizes the patient's inspiratory flow to provide the required energy to deagglomerate and disperse the powder for delivery to their lungs. In this study, we characterized the aerosol performance of TPIP in response to changes in inhalation profiles to model more realistic use scenarios, i.e., for reduced inspiratory volumes and with inhalation acceleration rates that differ from those described in the compendia. The emitted dose of TP for all combinations of inhalation profiles and volumes ranged narrowly between 79 and 89% for the 16 and 32 mg TPIP capsules at the 60 LPM inspiratory flow rate but was reduced to 72-76% for the 16 mg TPIP capsule under the scenarios at the 30 LPM peak inspiratory flow rate. There were no meaningful differences in the fine particle dose (FPD) at all conditions at 60 LPM with the 4 L inhalation volume. The FPD values for the 16 mg TPIP capsule ranged narrowly between 60 and 65% of the loaded dose for all inhalation ramp rates with a 4 L volume and at both extremes of ramp rates for inhalation volumes down to 1 L, while the FPD values for the 32 mg TPIP capsule ranged between 53 and 65% of the loaded dose for all inhalation ramp rates with a 4 L volume and at both extremes of ramp rates for inhalation volumes down to 1 L for the 60 LPM flow rate. At the 30 LPM peak flow rate, the FPD values for the 16 mg TPIP capsule ranged narrowly between 54 and 58% of the loaded dose at both extremes of the ramp rates for inhalation volumes down to 1 L. Based on these in vitro findings, the TPIP delivery system appears not to be affected by the changes in inspiratory flow profiles or inspiratory volumes that might be expected to occur in patients with PAH or PH associated with underlying lung conditions such as ILD.

3.
J Pharmacol Exp Ther ; 383(1): 103-116, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36507843

RESUMO

Treprostinil palmitil (TP), a long-acting inhaled pulmonary vasodilator prodrug of treprostinil (TRE), has beneficial effects in a Sugen5416/hypoxia (Su/Hx) rat model of pulmonary arterial hypertension (PAH) that compare favorably to the oral phosphodiesterase 5 inhibitor (PDE5) sildenafil. In this study in male Sprague-Dawley rats, a dry powder formulation of TP (TPIP) was compared with inhaled and intravenous TRE and oral selexipag to evaluate inhibition of hemodynamic and pathologic changes in the lungs and heart induced by Su/Hx challenge. Su (20 mg/kg) was injected subcutaneously followed by 3 weeks of Hx (10% O2/balance N2) and then initiation of test article administration over 5 weeks with room air breathing. Hemodynamics and histopathology were measured at the end of the study. Su/Hx challenge approximately doubled the mean pulmonary arterial blood pressure (mPAP) and the Fulton index, decreased cardiac output (CO), doubled the wall thickness and muscularization of the small (10-50 µm) and medium (51-100 µm) sized pulmonary arteries, and increased the percentage of obliterated pulmonary blood vessels. Even though inhaled TRE (65 µg/kg, 4× daily), intravenous TRE (810 ng/kg/min), and oral selexipag (30 mg/kg, twice daily) provided some beneficial effects against the Su/Hx challenge, the overall benefit was generally greater with TPIP at high dose (117 µg/kg, once daily). These results demonstrate that TPIP compares favorably to inhaled and intravenous TRE and oral selexipag with respect to inhibition of the pathophysiological changes induced by Su/Hx challenge in rats. SIGNIFICANCE STATEMENT: Treprostinil palmitil (TP) is a long-acting pulmonary vasodilator prodrug of treprostinil (TRE) formulated for inhaled administration by dry powder [treprostinil palmitil inhalation powder (TPIP)]. Comparison of the activity of TPIP, inhaled and intravenous TRE, and oral selexipag in a Sugen5416/hypoxia (Su/Hx) rat model of pulmonary arterial hypertension demonstrated that each of these drugs exert protection against the hemodynamic and histopathological changes induced by the Su/Hx challenge, with the greatest effect on these changes produced by TPIP.


Assuntos
Hipertensão Pulmonar , Pró-Fármacos , Hipertensão Arterial Pulmonar , Masculino , Ratos , Animais , Hipertensão Arterial Pulmonar/tratamento farmacológico , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Hipertensão Pulmonar/tratamento farmacológico , Ratos Sprague-Dawley , Administração por Inalação , Epoprostenol/farmacologia , Vasodilatadores , Hipóxia/tratamento farmacológico
5.
Pharmaceutics ; 14(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35214039

RESUMO

While the inhalation route has been used for millennia for pharmacologic effect, the biological barriers to treating lung disease created real challenges for the pharmaceutical industry until sophisticated device and formulation technologies emerged over the past fifty years. There are now several inhaled device technologies that enable delivery of therapeutics at high efficiency to the lung and avoid excessive deposition in the oropharyngeal region. Chemistry and formulation technologies have also emerged to prolong retention of drug at the active site by overcoming degradation and clearance mechanisms, or by reducing the rate of systemic absorption. These technologies have also been utilized to improve tolerability or to facilitate uptake within cells when there are intracellular targets. This paper describes the biological barriers and provides recent examples utilizing formulation technologies or drug chemistry modifications to overcome those barriers.

6.
Antimicrob Agents Chemother ; 65(7): e0031621, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33941518

RESUMO

Chronic pulmonary methicillin-resistant Staphylococcus aureus (MRSA) disease in cystic fibrosis (CF) has a high probability of recurrence following treatment with standard-of-care antibiotics and represents an area of unmet need associated with reduced life expectancy. We developed a lipoglycopeptide therapy customized for pulmonary delivery that not only demonstrates potent activity against planktonic MRSA, but also against protected colonies of MRSA in biofilms and within cells, the latter of which have been linked to clinical antibiotic failure. A library of next-generation potent lipoglycopeptides was synthesized with an emphasis on attaining superior pharmacokinetics (PK) and pharmacodynamics to similar compounds of their class. Our strategy focused on hydrophobic modification of vancomycin, where ester and amide functionality were included with carbonyl configuration and alkyl length as key variables. Candidates representative of each carbonyl attachment chemistry demonstrated potent activity in vitro, with several compounds being 30 to 60 times more potent than vancomycin. Selected compounds were advanced into in vivo nose-only inhalation PK evaluations in rats, where RV94, a potent lipoglycopeptide that utilizes an inverted amide linker to attach a 10-carbon chain to vancomycin, demonstrated the most favorable lung residence time after inhalation. Further in vitro evaluation of RV94 showed superior activity to vancomycin against an expanded panel of Gram-positive organisms, cellular accumulation and efficacy against intracellular MRSA, and MRSA biofilm killing. Moreover, in vivo efficacy of inhaled nebulized RV94 in a 48 h acute model of pulmonary MRSA (USA300) infection in neutropenic rats demonstrated statistically significant antibacterial activity that was superior to inhaled vancomycin.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/uso terapêutico , Lipoglicopeptídeos , Pulmão , Testes de Sensibilidade Microbiana , Ratos , Infecções Estafilocócicas/tratamento farmacológico , Vancomicina
7.
Int J Mol Sci ; 22(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430435

RESUMO

Treprostinil palmitil (TP) is a prodrug of treprostinil (TRE), a pulmonary vasodilator that has been previously formulated for inhaled administration via a nebulizer. TP demonstrates a sustained presence in the lungs with reduced systemic exposure and prolonged inhibition of hypoxia-induced pulmonary vasoconstriction in vivo. Here, we report on re-formulation efforts to develop a more convenient solution-based metered-dose inhaler (MDI) formulation of TP, a treprostinil palmitil inhalation aerosol (TPIA) that matches the pharmacokinetic (PK) and efficacy profile of a nebulized TP formulation, treprostinil palmitil inhalation suspension (TPIS). MDI canisters were manufactured using a two-stage filling method. Aerosol performance, formulation solubility, and chemical stability assays were utilized for in vitro evaluation. For in vivo studies, TPIA formulations were delivered to rodents using an inhalation tower modified for MDI delivery. Using an iterative process involving evaluation of formulation performance in vitro (TP and excipient solubility, chemical stability, physical stability, and aerosol properties) and confirmatory testing in vivo (rat PK and efficacy, guinea pig cough), a promising formulation was identified. The optimized formulation, TPIA-W, demonstrates uniform in vitro drug delivery, a PK profile suitable for a once-daily administration, efficacy lasting at least 12 h in a hypoxic challenge model, and a significantly higher cough threshold than the parent drug treprostinil.


Assuntos
Aerossóis/farmacologia , Epoprostenol/análogos & derivados , Pró-Fármacos/farmacologia , Hipertensão Arterial Pulmonar/tratamento farmacológico , Administração por Inalação , Animais , Modelos Animais de Doenças , Composição de Medicamentos , Epoprostenol/química , Epoprostenol/farmacologia , Cobaias , Humanos , Nanopartículas/química , Pró-Fármacos/química , Hipertensão Arterial Pulmonar/patologia , Ratos , Vasoconstrição/efeitos dos fármacos , Vasodilatadores/química , Vasodilatadores/farmacologia
8.
Pulm Pharmacol Ther ; 65: 102002, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33596473

RESUMO

Treprostinil (TRE) is a prostanoid analog pulmonary vasodilator drug marketed with subcutaneous, intravenous (i.v.), oral, and inhaled routes of administration for the treatment of pulmonary arterial hypertension (PAH). Due to its short half-life, TRE requires either continuous infusion or multiple dosing, which exacerbates its side effects. Therefore, a long-acting prostanoid analog that maintains the positive attributes of TRE but has fewer TRE-related side effects could be of clinical benefit. In this report, we describe the discovery, preclinical development, and biology of the TRE ester prodrug, treprostinil palmitil (TP), which is formulated in a lipid nanoparticle (LNP) for administration as a nebulized inhaled suspension (TPIS). In screening assays focused on the conversion of prodrug to TRE, TP (16 carbon alkyl chain) had the slowest rate of conversion compared with short-alkyl chain TRE prodrugs (i.e., 2-8 carbon alkyl chain). Furthermore, TP is a pure prodrug and possesses no inherent binding to G-protein coupled receptors including prostanoid receptors. Pharmacokinetic studies in rats and dogs demonstrated that TPIS maintained relatively high concentrations of TP in the lungs yet had a low maximum plasma concentrations (Cmax) of both TP and, more importantly, the active product, TRE. Efficacy studies in rats and dogs demonstrated inhibition of pulmonary vasoconstriction induced by exposure to hypoxic air or i.v.-infused U46619 (thromboxane mimetic) over 24 h with TPIS. Cough was not observed with TPIS at an equivalent dose at which TRE caused cough in guinea pigs and dogs, and there was no evidence of desensitization to the inhibition of pulmonary vasoconstriction in rats with repeat inhaled dosing. TPIS was also more efficacious than i.v.-infused TRE in a sugen/hypoxia rat model of PAH to inhibit pulmonary vascular remodeling, an effect likely driven by local activities of TRE within the lungs. TPIS also demonstrated antifibrotic and anti-inflammatory activity in the lungs in rodent models of pulmonary fibrosis and asthma. In a phase 1 study in healthy human participants, TPIS (referred to as INS1009) had a lower plasma TRE Cmax and fewer respiratory-related side effects at equimolar doses compared with inhaled TRE. We have now formulated TP as an aerosol powder for delivery by a dry powder inhaler (referred to as treprostinil palmitil inhalation powder-TPIP), and as an aerosol solution in a fluorohydrocarbon solvent for delivery by a metered dose inhaler. These options may reduce drug administration time and involve less device maintenance compared with delivery by nebulization.


Assuntos
Pró-Fármacos , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Biologia , Cães , Epoprostenol/análogos & derivados , Cobaias , Ratos
9.
J Aerosol Med Pulm Drug Deliv ; 21(3): 245-54, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18759656

RESUMO

The stress of nebulization has been shown to alter the properties of liposomal drugs. What has not been demonstrated is whether nebulized liposomes differ as a function of droplet size. Because droplet size influences lung deposition, liposomes with different properties could be deposited in different areas of the lung (e.g., central vs. peripheral). In this report, a liposomal amikacin formulation (Arikace, a registered trademark of Transave, Inc., Monmouth Junction, NJ) that is being developed as an inhaled treatment for gram negative infections was aerosolized with an eFlow (registered trademark of PARI, GmbH, Munich, Germany) nebulizer, reclaimed from the various stages of an Andersen cascade impactor (ACI) and analyzed for lipid-to-drug (L/D) (w/w) ratio, amikacin retention, and liposome size. For the nebulized solution, 99.7% of the total deposited drug was found on ACI stages 0 through 5, which have cutoff diameters of 9, 5.8, 4.7, 3.3, 2.1, and 1.1 microm, respectively. Properties were found to differ for drug reclaimed on stage 0 compared stages 1-5, which were not different from one another. For drug found on stages 1-5 (97% of total drug), the averages (n = 3) for L/D, percent encapsulated amikacin, and liposome mean diameter ranged from 0.59 to 0.68 (w/w), 71% to 75%, 248 to 282 nm, respectively. Drug found on stage 0 (2.8% of total drug) had an average L/D ratio of 0.51 and average liposome mean diameter of 375 nm. Examination of another batch of liposomal amikacin revealed no statistically significant differences between drug reclaimed on stages 0-5. Although a droplet size dependence was noted for one batch of Arikace aerosolized with the eFlow, the effect was considered to be inconsequential because the fraction in doubt represented nonrespirable particles >9 microm and accounted for <3% of the total deposited dose. The methodology applied here appears useful in evaluating aerosolized liposome systems. However, our results should not be assumed to apply to other liposome/drug compositions and nebulizers.


Assuntos
Amicacina/administração & dosagem , Antibacterianos/administração & dosagem , Aerossóis , Amicacina/química , Antibacterianos/química , Cromatografia Líquida de Alta Pressão , Desenho de Equipamento , Lipossomos , Nebulizadores e Vaporizadores , Tamanho da Partícula
10.
Biophys J ; 86(5): 2951-64, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15111411

RESUMO

We reported previously the effects of both osmotic and curvature stress on fusion between poly(ethylene glycol)-aggregated vesicles. In this article, we analyze the energetics of fusion of vesicles of different curvature, paying particular attention to the effects of osmotic stress on small, highly curved vesicles of 26 nm diameter, composed of lipids with negative intrinsic curvature. Our calculations show that high positive curvature of the outer monolayer "charges" these vesicles with excess bending energy, which then releases during stalk expansion (increase of the stalk radius, r(s)) and thus "drives" fusion. Calculations based on the known mechanical properties of lipid assemblies suggest that the free energy of "void" formation as well as membrane-bending free energy dominate the evolution of a stalk to an extended transmembrane contact. The free-energy profile of stalk expansion (free energy versus r(s)) clearly shows the presence of two metastable intermediates (intermediate 1 at r(s) approximately 0 - 1.0 nm and intermediate 2 at r(s) approximately 2.5 - 3.0 nm). Applying osmotic gradients of +/-5 atm, when assuming a fixed trans-bilayer lipid mass distribution, did not significantly change the free-energy profile. However, inclusion in the model of an additional degree of freedom, the ability of lipids to move into and out of the "void", made the free-energy profile strongly dependent on the osmotic gradient. Vesicle expansion increased the energy barrier between intermediates by approximately 4 kT and the absolute value of the barrier by approximately 7 kT, whereas compression decreased it by nearly the same extent. Since these calculations, which are based on the stalk hypothesis, correctly predict the effects of both membrane curvature and osmotic stress, they support the stalk hypothesis for the mechanism of membrane fusion and suggest that both forms of stress alter the final stages, rather than the initial step, of the fusion process, as previously suggested.


Assuntos
Biofísica/métodos , Osmose , Polietilenoglicóis/química , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Lipídeos/química , Fusão de Membrana , Lipídeos de Membrana/química , Modelos Estatísticos , Modelos Teóricos , Oxigênio/química , Fosfatidiletanolaminas/química , Termodinâmica , Água/química
12.
Biochemistry ; 41(18): 5913-9, 2002 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-11980495

RESUMO

We have hypothesized that modulating the free energy of hydrophobic mismatch (HM) might be a principal means to control the fusion process and that it may be a role of cholesterol to counteract HM and make membranes fusogenic. To test these hypotheses, we examined the ability of cholesterol 1-pyrenebutyrate (PY-Ch) and other pyrene-containing fluorescent probes to report interstices formed during the L(alpha)-H(II) transition of DiPoPE in terms of changes in excimer/monomer (E/M) fluorescence ratios. We found a significant (>150%) increase in the PY-Ch E/M in the hexagonal phase relative to the lamellar phase, presumably resulting from redistribution of PY-Ch from the curved lamellar leaflets to coexisting HMs that constitute 20 vol % of this phase. All other probes showed a much smaller or even an opposite (PY-hexadecanoic acid) effect. The time course of the PY-Ch E/M ratio during fusion of DOPC/PE/Ch small unilamellar vesicles showed a transient increase with a subsequent decrease, consistent with fusion proceeding through intermediates with significant HM. The amplitude and position of the maximum in E/M correlated with the rate of contents mixing. An increase in E/M was not seen when lipid mixing occurred in the absence of contents mixing. Our results suggest that PY-Ch provides a tool for monitoring fusion intermediates that occur after the initial fusion intermediate but prior to pore formation, possibly by accumulating in regions associated with HM.


Assuntos
Colesterol/metabolismo , Corantes Fluorescentes/metabolismo , Lipossomos/metabolismo , Fusão de Membrana , Pirenos/metabolismo , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química , Lipossomos/química , Fusão de Membrana/efeitos dos fármacos , Polietilenoglicóis , Pirenos/química , Temperatura , Fatores de Tempo
13.
Biophys J ; 82(4): 2090-100, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11916865

RESUMO

Poly (ethylene glycol) (PEG) in the external environment of membrane vesicles creates osmotic imbalance that leads to mechanical stress in membranes and may induce local membrane curvature. To determine the relative importance of membrane stress and curvature in promoting fusion, we monitored contents mixing (CM) and lipid mixing (LM) between different sized vesicles under a variety of osmotic conditions. CM between highly curved vesicles (SUV, 26 nm diameter) was up to 10 times greater than between less curved vesicles (LUV, 120 nm diameter) after 5 min incubation at a low PEG concentration (<10 wt%), whereas LM was only approximately 30% higher. Cryo-electron microscopy showed that PEG at 10 wt% did not create high curvature contacts between membranes in LUV aggregates. A negative osmotic gradient (-300 mOs/kg, hypotonic inside) increased CM two- to threefold for both types of vesicles, but did not affect LM. A positive gradient (+220 mOs/kg, hypertonic inside) nearly eliminated CM and had no effect on LM. Hexadecane added to vesicles had no effect on LM but enhanced CM and reduced the inhibitory effect on CM of a positive osmotic gradient, but had little influence on results obtained under a negative osmotic gradient. We conclude that the ability of closely juxtaposed bilayers to form an initial intermediate ("stalk") as soon as they come into close contact was not influenced by osmotic stress or membrane curvature, although pore formation was critically dependent on these stresses. The results also suggest that hexadecane affects the same part of the fusion process as osmotic stress. We interpret this result to suggest that both a negative osmotic gradient and hexadecane reduce the unfavorable free energy of hydrophobic interstices associated with the intermediates of the fusion process.


Assuntos
Lipídeos/química , Osmose , Polietilenoglicóis/química , Alcanos/química , Fenômenos Biofísicos , Biofísica , Microscopia Crioeletrônica , Relação Dose-Resposta a Droga , Modelos Estatísticos , Concentração Osmolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...